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The Graph Clustering Problem Self-fixing Intelligent Ant-based Clustering
Given an undirected graph G = (V, E'), where V' denotes the set of vertices and F is the set of edges,
the graph clustering problem can be defined as dividing the vertices into £ disjoint sets, V7, V5, ...,
V1., such that the following criteria are met:
I . Inspiration: The major and minor workers in Pheidole genus.
o Ui Vi=VVI<i<k . . .
Pheidole genus Major workers Minor workers
.‘/;QV?:@’\V/lSZ’]Sk PictureofP.” |
o Vu; € Vi, u; € Vi, up & Vi, Similarity(u;, u;) > Similarity(u;, uy) R M)
Ant-based Clustering / \\
1
Deneubourg et al.[1] develop a distributed sorting algorithm for robot applications based on clustering . Larger —
Of COrp SES 1n a COlOIly Of P h@ldOle P Clll ldula' Lumer and Fal@ta [2] eXtend the ant sor tlng algorlthm o Task Foraging for food or defending the nest | Housekeeping tasks such as feeding the brood or cleaning
cluster data objects on a grid. Kuntz et al. [3] propose ant-based clustering - KLS algorithm to solve the nest
the graph partitioning problem. In KLS, vertices and ants are randomly distributed on a 2D grid, and SFIAC Major workers Minor workers
each ant has three states: random walk, pick up a vertex, and drop a vertex. Workload Every iteration Every N (e.g. 1000) iterations
Task Run IAC Improve cluster separation and exploit global optimality:
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Figure 4: Evaluations

(a) Time =0 (b) Time = 1000 Drawbacks of KLS:
- Slow
- Stagnation

- Does not cope with noise

Conclusion

(c) Time = 500,000 (d) Time = 2,000,000

(d) Time = 4000

To improve the original KLS algorithm, we introduce Intelligent Ant-based Clustering (IAC) using
techniques such as hopping ants, relaxed drop function, ants with memories, and stagnation control.
Figure 1: Ant-based Clustering - KLS Based on IAC, we introduce Self Fixing Intelligent Ant-based Clustering (SFIAC) that adds house-
keeping minor ants to improve the solution quality. When tested on the benchmark networks, SFIAC
outperforms or achieves the same solution quality as both ACO-MMAS and IAC on 7 out of 10 net-
works and 1s robust against different graphs. In practice, the speed of SFIAC is at least 10 times faster

Intelllgent Ant-based Clusterlng than ACO-MMAS, making i1t a comparatively scalable algorithm.

Improvements made to KLS algorithms include:

e The random walk of an ant 1s now a combination of hopping[4] and walking. The hopping 1s for

efficiency, and the walking 1s for exploration. Forthcomlng Research

® Relaxed drop function[2] to prevent stagnation. We are working on an interdisciplinary collaboration project with Department of Biological Sciences

| 2f (i) if f (i) < ky of University of Manitoba to observe the clustering behaviors of real ants.
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e Each ant 1s assigned a small amount of memory[2] to remember the past few positions it resided. References

e An ant is forced to drop the object if it passes a threshold of failed attempts.
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