
1.1 Terminology

1.2 How We Mutate Programs
Our experiments use two different kinds of 
mutations to the Abstract Syntax Tree (AST) 
of a partially-compiled program:

■ Delete a randomly selected node (and its 
subtree if one exists) from the AST.

■ Copy a random node (and its subtree if one 
exists) in the AST to another random location.

Neutral Networks Enable Distributed Search in Evolution
Joseph Renzullo, Stephanie Forrest, Melanie Moses
Department of Computer Science, University of New Mexico

This work was supported by a James S. McDonnell Foundation 
Complex Systems Scholar Award. The authors gratefully acknowledge 
the partial support of NSF (1518878,1444871), DARPA (FA8750-15-
C-0118), AFRL (FA8750-15-2-0075), the Sandia National Laboratories 
Academic Alliance, and the Santa Fe Institute.

1. Introduction

Genetic variants that have the same 
fitness are referred to as neutral.

A neutral network is a set of equal-
fitness individuals related by single 
mutations.

We focus on evolution as a distributed 
search process and how it uses 
neutral networks to produce 
complexity.

2. Theoretical Biology

3. Mutating UNIX look
Each node in the graph to the right is a 
mutated variant of UNIX look, a 
dictionary lookup program with ~1000 
lines of code.

Each variant passes all test cases 
(input/output pairs with known 
answers) the original program passed.

We call variant programs with identical 
test case behavior neutral variants.

We investigated the local neighborhood 
around the original program in order to 
determine the viability of moving 
around the neutral network of a 
computer program.

4. Locating repairs to a 
bug in UNIX look

Nodes in black retain the original 
program's behavior - they have the bug

Nodes in pale yellow repair the bug

Repaired programs often appear in 
clusters.

Implications:

This topology may inform strategies for 
automatic repair search.

It should be possible to sample less 
exhaustively and still hit clusters.

5. Differentiating 
sources of repairEvolution favors high robustness 

and high innovation networks.How can we efficiently 
search for repairs to bugs 
in computer programs?
■ Automated tools exist, but the 
search space is enormous

■ Evolving populations of biological 
organisms face a simiar search space 
problem

■ Exploiting characteristics of the 
search space is a promising direction

■ We investigate the structural 
relationship of randomly-generated, 
functionally-similar variants of 
computer programs

A neutral network can enable a safe 
search for innovations:
■ If not robust, single mutations often 
do not maintain fitness (left)
■ If robust enough, exploration by 
single mutations is possible (center) 
while maintaining existing fitness
■ If too robust, mutations cannot 
change fitness (right)


