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P E R I O D I C  E V O L U T I O N  O F  S P A C E  C H A O S  I N  T H E  

O N E - D I M E N S I O N A L  C O M P L E X  G I N Z B U R G - L A N D A U  

E Q U A T I O N  

M.  V.  B a z h e n o v ,  M.  I. R a b i n o v i c h ,  a n d  L. L. R u b c h i n s k i i  UDC 530.1 

Periodic evolution of the space chaos in a one-dimensional distributed system represented by 
the complex Ginzburg-Landau equation is studied. There exists a region of parameters where 
spatially chaotic distribution of the field varies periodically with time~ and the boundaries of this 
region are determined. The regime of periodic space chaos was found to exist only for certain 
initial conditions. A system of ordinary differential equations that describes the space chaos is 
derived. 

1. I N T R O D U C T I O N  

Among the most widely accepted models in the theory of nonequilibrium media is the complex 
Ginzburg-Landau equation, which describes the behavior of a distributed system in the vicinity of an 
Andronov-Hopf bifurcation point: 

0ta --= a -- (1 + ifl)la]2a + (1 + ic~)02xa. (i) 

Equation (1) depends on two real parameters, a and ;3, and, even in the 1-D case, it describes a great number 
of phenomena, for example, regimes of phase and amplitude turbulence, the hysteresis phenomenon, and the 
space-time intermittence (see, for example, [2, 3]. In this paper, we study another interesting phenomenon 

- -  the space chaos periodically oscillating in time (see also [1]). 

2. T I M E  S Y N C H R O N I Z A T I O N  O F  I R R E G U L A R  P A T T E R N S  

Let us consider Eq. (1) in the region GL = { - L  <_ x < L} with periodic boundary conditions at the 
boundary z -- d=L. As the initial space, we take s - -  a set of complex functions which are continuous 
in GL with the norm 

,, I,: ( /  4 x1/4 
a lal dx )  . (2 )  

GL 

Equation (1) was integrated over the region GL with periodic boundary conditions using the pseudo- 
spectral method [4]. 

Figure 1 shows the results of a computer-aided experiment. The symbol "o" denotes the points at 
which a regime of the space chaos with the complex amplitude a(z, t) periodically oscillating in time was 
established, and the symbol " ."  denotes the points at which the space-time chaos was established (the 
Benjarrdn-Feir line, the boundary of the amplitude and phase turbulence regions, and the boundary of the 
hysteresis region are also indicated [3]). The above points do not exhaust the entire set of parameter values, 
for which the regime in question can be realized. This relates to the fact that the periodic regime is not set 
up for all initial values, and that the time for the periodic regime to set up is substantially great (T ~ 104) 
and increases as the distance to the upper boundary of the periodicity region decreases. The lower boundary 
seems to match the existence boundary of the amplitude turbulence regime [3] (dashed line in Fig. 1). 
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The periodicity region shown in Fig. 1 was constructed for a system with length 2L = 600. A system 
with length 2L = 6000 was also considered. The oscillation period was invariant with respect to the system 
length for all cases. 

Figure 2 shows an instantaneous shot of the field amplitude under the established regime for parameter  
values from the periodicity region (8 = 1.5, a = -0.9).  The dependence of the real part of the field a on 
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the coordinate and time on the (x - t ) - p l a n e  for the same a and fl is given in Fig. 3, where a developed 
amplitude turbulence is evident. The time evolution of the space distribution (Fig. 2) is complex, involves 
the birth and the disappearance of structures, but is regular in time. 

To analyze the above oscillations, we introduce the distance in the space s Using the norm (2), 
we have 

, ( f  4 ,1/4 ptu, v ) = , + i u - v [  d~) . (3) 
Gz, 

4 shows the dependence of p4(a(x, t o ) , .  a(~,to + t)) on time t for fl : 1.5 and a = -0.9.  As Figure 

one would expect, this dependence is of the oscillatory character, the distance between the functions a(~, to) 
and a(~, t0 + t) vardshes periodically, and the oscillation period (T ~ 43) coincides with the variation period 
of the variable a(x, t)  (see Fig. 3). 

It was mentioned that  the regime of a space chaos periodically oscillating in time is not established 
for all the irdtial conditions. However, when this was the case, the oscillation period was the same, although 
the particular form of the space distribution differed for various initial conditions. The dependence of the 
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distance between the functions a(~, to) and a'(~, to + t) satisfying various initial conditions is periodic (with 

the same period), but p(a(~,t0),  a'($,to + t)) does not vanish. 
Due attention should be paid to the structural stability of our regime, i. e., the stability relative to the 

small perturbations on the right side of Eq. (1). We investigated the stability of the periodic regime relative 
to the perturbations on the right side of Eq. (1) in the form :t=61a4]a with 8 = 0.005. The regime of the 
time-periodic chaos was found to be structurally stable. The period of oscillations is a continuous function 
of the right side of Eq. (1), although the form of oscillations changes markedly with the perturbation sign. 

3. D I S C U S S I O N  

The described regime can appear as a result of the Andronov-Hopf bifurcation of the stable space 
distribution, which incorporates a family of the Nozaki-Bekki darkening solitons [5]. This scenario is quite 
possible if we consider Eq. (1) as a chain of related oscillators, and the regime studied can be interpreted as 
a synchronization of oscillators. 

The change to chaos in the system is performed through intermittence. In the vicinity of the boundary 
of the periodicity region, a regime is observed under which the spatial location of the aperiodicity islands 
changes with time, and, therefore, periodic oscillations are interrupted by chaotic bursts. 

The space chaos oscillating periodically in time found in the course of the numerical simulation can, 
in principle, be described analytically. The solution of Eq. (1) can be given in the form 

o o  

a(z,t) = ( ~  Ak(z)r -i~ (4) 
k=O 

where {r is the total system of orthogonal functions with period T. 
An approximate solution of Eq. (1) can be written in the form of the finite sum 

m 

a,n(z,t)  = (~-~ Ak(z)r -i~t. (5) 
k=O 

Since am(~,t) is not an exact solution of Eq. (1), the difference 

F(am)-  Oam ot  a,n + (1 + i )laml a,  - (1 + (6) 

calmot be identically equal to zero. Therefore, there arises the problem of minimization of this difference to 
a certain reasonable extent by a proper choice of Ak(z). 

We shall use the Galerkin method, which reduces the problem of finding Ak(z) to the solution of a 
system of ordinary differential equations of the type 

T 

0 k=O 

(k = 0 , . . . , m ) ,  (7) 

where r is the complex conjugate of r  The system obtained is conservative and its phase volume is 
retained, i.e., its phase space contains no attractors. This explains the fact that  to different initial conditions 
correspond different spatial distributions of the field in a steady-state regime. 

To obtain an adequate description of the system behavior, we need a great number of harmonics. 
However, it can be assumed that  for the solution of Eq. (1), which is periodic in time, there exists a 
Galerkin approximation of a sufficiently high order, which approximates this solution to a preset accuracy. 
That is, for each fixed t = to, the spatial distribution of the field a(~, to) is approximated rather  accurately 
by the solution of a finite-dimensional dynamic system (7) am(z, to). We still have to clarify finally whether 
or not the exact solution for a(x, to) is finite-dimensional. 
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