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Abstract. The construction of a dynamical theory of neural
networks has been a goal of physicists, mathematicians and
biologists for many years now. Experimental breakthroughs in
medern neurobiology have allowed researchers to approach this
goal. Significant advances have been made for small neural
networks, which are generators of the rhythmic activities of
living organisms. The subject of the present review is the pro-
blem of synchronisation, one of the major aspects of the dyna-
mical theory. It is shown that synchronisation plays a key rolein
the activity of both minimal neural networks (neural pair) and
neural assemblies with a large number of elements (cortex).

1. Introduction

"1.1 Historical background _
Classical concepts of the synchronisation phenomenon are
based on the notions of closeness of the frequencies or phases
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of the subsystems generating periodic oscillations. A pendu-
lum clock fastened to a beam (Huygens [1]), acoustically
coupled organ pipes (Rayleigh [2]), electronic generators
(Van der Pol 3], Andronov, Vitt [4]), different modes in a
laser cavity, Josephson junctions forming an array [5] are all
examples of such subsystems. This list may be continued.

Using the traditional language of dynamical systems with
continuous time one can say that synchronisation of periodic
oscillations may be represented as follows. While a stable
limit cycle is a geometrical image of such oscillations, an
attracting two-dimensional (or n-dimensional) torus is a
geometrical image of the oscillations generated by two (or n)
uncoupled oscillators in a common phase space. As the
parameter of coupling is increased (¢ > 0), the motions of
partial subsystems are no longer independent, and a stable
limit cycle is born on the torus that is still an attractor. This
corresponds to the transition of the system to synChronisa-
tion.

More detailed information about the synchronisation
and resonance phenomena in a system of two coupled
oscillators possessing regular dynamics is furnished by
devil’s staircase (the rotation number of the system on a
torus plotted versus frequency of one of the oscillators). The
rotation number is the limiting ratio ¢(z)/@,(t) of the
phases of partial oscillators which were independent at
€=0: p(e) = limoa [@1(r)/@,(r)]. For unidirectional cou-
pling, i.e., when a periodic force of frequency w; acts on an
oscillator of frequency wn, the dependence of the rotation
number on w; has a form of a staircase whose steps form a
Cantor set. The rotation number equal to the ratio of integers,
u = p/q, corresponds to synchronisation. The numbers p and
g correspond to the numbers of the harmonics at which
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synchronisation occurs. If one follows the changes not only of
the frequency w; but also of some other parameter, for
example, force amplitude y, then the synchronisation regions
are no longer sections on the curve line w; but, instead,
regions on the plane (y, w;). Usually these regions are tongue-
shaped and are referred to as the Amol’d tongues [6].

Synchronized motions in organisation of coupling are
inherent in both periodic and chaotic oscillators. A strange
attractor is a geometrical image of such partial oscillations. A
typical feature of coupled non-identical chaotic subsystems is
that they can coordinate their motions only on the average in
time [7]. Chaotic synchronisation may result in identical
topologies of strange attractor projections onto partial
subspaces, identical correlation dimensions and power spec-
tra of partial oscillations. Being similar in a certain sense, the
time series, however, need not necessarily to coincide locally
in time.

In this situation it is natural to introduce the concepts of
generalised synchronisation and degree of synchronisation.
They are particularly important as applied to synchronisation
of the neurons generating rather complex pulsations with
several characteristic time scales.

Typical oscillations generated by a pacemaker are shown
in Fig. 1. They may be chaotic or regular, but, generally, one
can distinguish bursts of spikes alternating with a Telatively
slow variation of membrane potential. One can speak about
synchronisation, for instance, of slow maotions considering
only bursts, or about complete synchronisation when, besides
bursts, spikes are also regarded.

vV, mV
0.5
-0.5
-1.5 H H
0 5 10 15 20

Time, 5 x 10 ms

Figure 1. Time series {rom an isolated real neuron. It has been measured
from a stomatogastric LP neuron of CPG of lobster, when the rest of the
neurons in the ganglion has been hyperpolarised [40].

Early investigations of synchronisation in neural net-
works concerned analysis of the behaviour of central pattern
generators (CPG) which control rhythmic movements of
living organisms (breathing, walking, running, etc.). Differ-
ent dynamical models of neuron-oscillators, including those
described by symbolic dynamics (finite automata) were
employed. One of the pioneer works in this field described
the synchronised (with the constant phase shift taken into
account) work of the CPGs controlling the locomotion of
salamanders in terms of finite automata [§].

Today, it is common knowledge supported by numerous
experiments (see Section 4) that rhythmic movements of
living organisms are governed by the CPGs which generate a
standard rhythm in an autonomous regime too, i.e., without
making use of the sensory feedback with the moving organs of
the animal. Nevertheless, such a feedback plays a very
important role when environmental conditions are changed.
This feedback changes the internal rhythmic pattern of CPG.

Investigations into the dynamics of CPGs of small neural
networks have radically changed our understanding of the
cooperative behaviour of neurons in ensembles. The basic
principles of synchronous operation of coupled neurons were
revealed: the mechanisms responsible for the formation of
stable regimes with a fixed phase shift between the interacting
neurons (e.g., for the CPG governing the rhythm of swim-
ming of a lamprey), the ability of such systems to learn to be
synchronised, and others. Of great significance are advances
in experimental methods which now allow one to obtain
rather long time series for oscillations of individual neurons
and use for processing of the results a broad variety of
techniques available in nonlinear dynamics today: analysis
of the Lyapunov exponents, calculation of the mutual
information function, etc. [9-11]. We believe that the
experimental data obtained in analysis of different CPGs
controlling the rhythmic activity of invertebrates and elemen-
tary vertebrates will enable researchers to answer, in the near
future, the basic questions related to synchronisation and
stable operation of small neural networks.

The situation is quite different when we speak about the
methanisms of cooperative work and synchronisation of
neurons in large neural networks (e.g., N~ 5 x 10° in the
human cortex). Analysis of such complex systems cannot be
based on direct experiments (whereas indirect ones may be
treated ambiguously). So, basic knowledge, in this case, is
gained by constructing models which merely illustrate
whether one or another problem may be solved in princi-
ple, ie., they may suggest a possible scenario of its solution

" in the living cortex. In the context of this overview, the most

significant achievement in the recent years is the discovery in
neurophysiological experiments of the fact that the phenom-
enon of perception may be closely related to oscillatory
activity of neurons, including the cases when this activity
was stimulated by non-oscillatory sources. This is true for
both individual neurons and neuron populations (see
Section 5).

1.2 Neuron models

A nerve cell and a cellular membrane are shown schematically
in Fig. 2. For construction of an adequate dynamical model of
a neuron it is essential that the surrounding membrane is
frequently an equipotential surface. Therefore, in analysis of
electric activity (the frequency of 4 to 60 Hz) of neurons, in
spite of their macroscopic size, nerve cells may be regarded as
a system described by ordinary differential equations. In
other words, the variables describing the state of the neuron
(membrane potential, ionic concentration, and so on) may be
considered as functions of time only. Another important issue
is description of neural activity. The state of the neuron is
determined by nonequilibrium diffusion of different charged
ions. Consequently, its activity should be modelled, generally
speaking, using a kinetic description. However, there is no
need for such a description when we are interested in a neuron
as a generator of low-frequency electric pulsations. For
construction of an adequate theory it suffices to employ
equations for dynamical variables: membrane potential and
macroscopic ionic currents averaged over time 1g € T(Tisthe
characteristic period of electric activity of the neuron). The
neuron can then be regarded as a nonlinear electric circuit of
RC elements (see Fig. 2c). Biochemical processes associated
with the interaction of intracellular and intercellular media
(see, e.g., Ref. [12] for detail) are energy sources for operation
of this dissipative system,
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Figure 2. (a) Schematic picture of a neuron:  —soma, 2-—membrane, 3 —
dendrites, 4 — axon, and 5 — synaptic terminals. (b) Ionic channels in
peuron membrane: K — potassium ions, Na — sodium ions, Ca —
calcium ions. (c) Electronic circuit which models the neuron membrane:

G, Gk, Gea, - - . — nonlinear ionic conductances; R,, — leaking resis-
tors; C,, — membrane capacitance; En,, Ex,. . .— rest potentials for each
ionic currents.

It is a nonequilibrium system with various feedbacks,
including delayed ones, which determines oscillatory activity
of neuron. Thanks to these feedbacks that open or close ionic
channels of the membrane at the respective phase of electric
activity the state of the neuron, corresponding to the rest
potential, may become unstable and the neuron becomes a
generator. Such a generator may be regarded as a dynamical
system in the framework of which microscopic kinetics is seen
only as small fluctuations.

The choice of nonlinear dynamical models of neurons that
are constructed for explanation of known phenomena and

_prediction of new ones (which is, actually, the purpose of any
theory) depends to a great extent on the neurophysiological
experiment. For example, CPG neurons are usually described
by variants of the classical Hodgkin - Huxley model (1952),
including its numerous generalisations which take into
account additional membrane currents; or, on the contrary,
more simplified models that use as variables membrane
potential V() and some auxiliary currents describing pro-
cesses of two types: fast Ir(r) and slow (1) ones (see, e.g., Refs
{13-15)).

A typical generalised Hodgkin—-Huxley model (in a
broader sense, a conductance-based model) is written in the

‘form

dV N
Cg=1I- S mal (b0 [V - V],
i=1
da; am,(V) - a;
dr - Ta:(V) '

characterises the electric capacitance of the membrane, i
designates the type of the current flowing through the
membrane or, in other words, the ion channel (potassium,
sodium or calcium channel, leakage channel), g; is the
maximal conductivity, ¥; is the equilibrium potential
(reverse potential) for the i-th channel, a; and b; are the
variables describing activation and inactivation of the i-th
channel which can be regarded, for instancé, as the
probability of opening or closing one or another channel;
pi and g; are the numbers of the controlling particles that
are sufficient to open or close the channel (usually, these are
integers ranging from zero to four); and g, (¥) and be, (V)
are stationary states of the activation and’ inactivation
levels. They have a sigmoid dependence on ¥, as character-
istic relaxation times 14,(¥) and 5, (V). In the classical work
of Hodgkin and Huxley N = 3 [14]. i

Simpler models of this type are also popular today. One of
the simplest is the Morris—Lecar model [15]:

dv
E——g&mm(V)(V Vea) — gx W(V - VK),

dW AW (V) - W]
F Tl (1.2)

where my, (V), W (V), and t(V) are sigmoid functions. Only
one variable W describing neuron activation is taken into
consideration here. Of course, it is impossible to describe all
details of neuron dynamics including chaotic oscillations of
the membrane potential of the cell observed in different
experiments {16, 17} in the frames of a dynamical model with
two-dimensional phase space, since the strange attractor
cannot be embedded into two-dimensional space. Therefore,
three-dimensional models based on the Hodgkin—Huxley
formalism are rather popular too, for example, the Chay
model [18] and some others.

The Hodgkin and Huxley formalism that is based o a
detailed analysis of ionic transport through the membrane
has proved to be very successful and is broadly employed
today. However, phenomenological models describing typi-
cal features of neuron dynamics are also highly productive. A
popular model of this type is the Rose—Hindmarsh model
[19] (see Section 3 for more detail):

& b —bd -zt

dar
dy
a": dxz i

%:r[s(x——xo)—-z] , (1.3)

where x is the membrane potential, y characterises ‘fast’
currents (e.g., potassium and sodium ones), z describes
‘slow’ currents, [ is an external current, and a, b, ¢, d, r, 5
and xp are constant parameters.

The Wilson—Cowan model (1972) is popular in analysis
of dynamical processes in the cortex. This model describes
oscillations in a system of two coupled neuron populations,
inhibitory and excitatory ones [20]:
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dE mechanism of synaptic dela-y we will describe how the
P— Fe(f.E~fil-P), . : ;

u tE= e(eE—fi ) synapse is organised [12, 23, 24].
dr Synapses (see Fig. 3) consist of two elements, the
= eF(geE—gil—Q), (1.4)  presynaptic terminal and the postsynaptic receptor site,

where E and ] are the dimensionless variables characterising
the activity of excitatory and inhibitory neurons, respec-
tively; € < 1 because the time constants for inhibition are
usually larger than the characteristic excitation times; and F
is a sigmoid function: F=1/(1+€*) or F=1/2+
(1/m) arctan x.

Very simple models in the form of phase oscillators (see,
e.g. Refs [21, 22])

de;
T -w,+ez;H,j(6,, 0)) (1.5

or still simpler spin type models, like the ones popular in the
theory of phase transitions, are also used for modelling large
neural networks. The scope of our overview does not allow us
to analyze even briefly all the numerous models of nevrons
available today. Information about them is summarised in
Table 1 (see Conclusions).

A particular role in the construction of a dynzfgnca.l theory
of neural networks belongs to models of synaptic couplmgs
between neurons. Their propemes should be considered in
more detail.

2. Why does the synchronisation in neural
networks differ from the synchronisation of
physical escillators?

The nerve cells which have evolved in higher organisms are
actually very complex biochemical systems. The genes and the
biochemical arrangement of neurons are in many ways
similar to that found in other cells, but they also have a
number of characteristic features which distinguish them
from all the other cells in the animal. They are not divided in
the post-embrional period (i.e. they cannot be a building
material), do not produce energy for organism, do not carry
mechanical loads. Their distinctive feature that is typical of
neurons only is the ability to process information. They are
able to generate electrical oscillations (single pulses — rest
potentials or their sequences) Another typical feature is
original architecture: the body of the cell and pronounced
branches (axon and dendrites connecting the neurons). One
of the most important controlling factors within the central
nervous system is the synapse (Fig. 2). In this section we will
discuss its important roles by examining the result of
combining synapses into small networks and the effect that
synapses have on neural synchronisation.

2.1 Synapse. Synaptic delay in neural networks

There are two causes for the delay in the coupling between
neurons. The first one is due to the cable properties of the
neuron, which is not specific of biology. A typical delay
varies from 0.5 ms (a short axon) to tens of milliseconds (a
very long axon) in transmission along the axon and
dendrites. In many long axons the speed of transmission is
also affected by the presence of a myelin sheath and the
saltatory connection which occurs between the nodes of the
sheath. The speed of transmission in myelin nerve fibers is
510 times greater than in non-myelin ones. The second
cause for delay is synapse. To better understand the

f

which may be located on the axon, soma or dendrite of the
nerve cell. The two elements are separated by a synaptic cleft.
There exist synapses of two types: electrical and chemical

ones. There is almost no delay in electrical synapse. The ions’

flow in or out of the nerve cells connected with each other.
The electrical coupling that occurs through this synapse
results in levelling of membrane potentials, i.e. in a decrease
of the error signal ¥; — V;. The electrical synapses provide
excitation in either direction (reciprocal coupling). Such a
coupling plays a decisive role in synchronisation of the

activity of different groups of neurons in some invertebrates

(e:g., a leech).

In a chemical synapse, the mformatlon is transmitted
through intercellular space (the cleft between presynaptic
and postsynaptic membranes is abouy 150—200 A, that is
an order of magnitude higher than in‘the electrical synapse).
The presynaptic terminals contain neurotransmitters which
are packaged into synaptic vesicles. Typical neurotransmit-
ters are glutamate and its derivatives and GABA which cause
excitation or inhibition, respectively. When an action poten-
tial invades the presynaptic terminal, the neurotransmitter is
released through the presynaptic membrane into the synaptic
cleft. When the neurotransmitter binds to the postsynaptic
membrane, the permeability and, consequently, the mem-
brane potential change.

Apparently, the synaptic delay is the result of the chemical
synapse of neurotransmitters. The typical delay time is 0.3-1
ms. This time is spent primarily on the neurotransmitter
release in the presynaptic terminal.

It should be noted that the delay time is not constant in
real neural networks. For example, enhanced activity of
neuron population decreases the delay time, which increases
susceptibility of the neural network [25] and has a positive
effect on the processes of attention, short-term memory and
learning which occur at enhanced neuron activity.

Figure 3. Sketch of a chemical synapse: J — presynaptic membrane, 2
postsynaptic membrane, 3 — interceliular space, 4 — vesicles, § —
postsynaptic receptors,

T e
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2.2 Syncronisation and state changes

Neural networks have been shown to have different dynami-
cal properties depending on their biochemical environment.
This environment is shaped by hormones as well as neuro-
modulatory chemicals released by specific neurons. Particular
substances can change the operating state of the neural system
which in terms of nonlinear dynamics is associated with
multistability. A specific stable synchronous behaviour of
neurons (e.g., having different phase shifts between the
synchronised neurons) may correspond to each regime of
operation of the system. This property is readily illustrated by
a relatively simple example: a CPG. Such a generator is a
group of synaptically coupled neurons generating sets of
different patterns for controlling motor activity. Here we
will consider a CPG controlling the locomotion of a horse (see
Section 4 for detail). It is known that a horse may stride, trot,
gallop or pace, depending on the speed at which it moves its
limbs. A model for such a CPG [22] is a network comprising 4
pacemakers. In the simplest approximations, such neurons
may be regarded as phase oscillators (see Section 4.3). In the
framework of such a model different gaits correspond to
different stable phase shifts between the oscillators respon-
sible for locomotion. Co-existence in phase space of séveral
attractors enables the neural network to change its behaviour,
without parameter changes, under the action of-¢ven a short
signal that emerges as the conditions are changed.

2.3 Plasticity and learning

Learning may be defined as an adequate variation of the
parameters of neural networks whose purpose is to perform
(acquire) new functions, which is assured by a relevant signal.
This property is also referred to as plasticity. Unlike multi-
stability, plasticity is connected with restructuring of
dynamics of the neural network that occurs as a result of
parameter changes. Multistability and plasticity co-exist in
living mechanisms.

Learning, at the cellular level, is based on the ability of
synapses to change their parameters under different condi-
tions. If synapses are in an active state for a rather long time
(i.e., presynaptic and postsyraptic cells are excited simulta-
neously), then the efficiency of signal transmission can be
increased. Such a synaptic memory is due to the complex
biochemical mechanisms of synapses {24, 26, 27]. In particu-
lar, electrical [28] and chemical [29] feedbacks may be
engaged. This process can be described, at the biochemical
level, as follows. When some stimulus acts on the postsynap-
tic-neuron, there is an inflow of positively charged ions that
leads to a decrease of the membrane potential. The calcium
channels open and Ca?* ions invade the cell. These ions
activate some enzymes, including those causing rearrange-
ment of the proteins forming the membrane. The ion channels
are modified in the membrane, the signal from the presynap-
tic neuron excites the postsynaptic neuron more effectively,
and the synaptic coupling is enhanced. For a relatively long
action on the brain of some stimulus, the synaptic couplings
change so that a whole class of close stimuli fix these
couplings (memorising). A distinctive feature of such a
memory is associations. If the image memorised by the
neural network is represented with distortions, it will
recognise it all the same, i.e., the memory compares the
computed image with the one of the original image it has
memorised. Memorising the couplings between different
stimuli (as in conditioned reflexes, etc.) is even more
complicated. Complicated processes of reciprocal action of

N

closely located synapses, each of which is excited by one of the
stimuli, makes the basis for such memory. Strictly speaking,
when real neural networks are taught, not only synapses but
also neurons are changed. In this connection, it is interesting
to mention the following experimental fact {26]. If the neurons
of new-born animals are pharmacologically blocked so that
they are not capable of firing action potentials, then these
neurons and their synapses cannot change (develop) asina
normal brain.

Such experiments allowed researchers to formulate some
rules about learning. The simplest of them is Hebb's rule [30,
31] which reads as follows: The synaptic coupling S; between
the i-th and j-th neurons is enhanced if the stimulus
simultaneously enhances activity of these post- and presy-
naptic neurons. (It is natural that this rule needs to be
modified in the case of inhibitory coupling.) This rule is
frequently employed for teaching one of the simplest neural
networks — Hopfield’s network [32], in which the neuron
may be in two states only. On completion of learning, the
network is capable of recognising images. Naturally, learning,
memorising, and the processes of recognition and forgetting
occur simultaneously in living neural networks, but within
different time scales.

An adequate model for neural networks must mclude
dynamical equations for the parameters of synaptic cou-
plings. An example of an equation for synaptic coupling is
133]

dS'f = al; Za(:- ) - (2.1)

where I; is the current flowing into the cell i, ¢/ is the time of
pulse generation in the j-th cell, & is a positive parameter the
variations of which may allow for the action of neurotrans-
mitters (neuromodulators), and F characterises forgetting.
Such adequate self-consistent models for neural networks are
still to be constructed.

2.4 Self-regulation
A reliable neural network must function safely and steadily
when the input signals fluctuate or some neurons fail, which is
of fundamental significance because the nerve cells are not
restored. This means that the neural network must be
structurally stable in a broad sense. At the same time, if
external changes are substantial, the network must develop
dynamically to match these changes. Self-modulation is one
of the possible mechanisms responsible for such a behaviour.
The self-modulation is generation by the neural network of
neuromodulators, i.e., chemically active substances which
change (modulate) the property of synapses by weakening
or strengthening the action of neuromediators (for example,
by blocking their generation, destroying them, blocking the
postsynaptic membrane or, on the contrary, preventing their
destruction, and 50 on).

Self-modulation may be both short-and long-term one.
Short-term modulation is especially typiml of smalil neural

petworks (or CPG). In particular, it is inherent in stomato-

gastric CPG of a lobster [34] (see also Section 3), swimming
CPG of a clione [35}, swimming CPG of a tritonia {36}, and so
on.

Long-term self-regulation is observed, in particular, in
hypocampus neurons responsible for the functions of
memory in the cortex [37}. Recent experiments showed that
such a mechanism connected with the action of neuromedia-
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tors released by a neuron on its neighbouring neurons also
influences the learning process [38].

3. Synchronisation of chaotic neurons

3.1 ‘Livif¥ neurons’ and strange attractors

Experiments performed in recent years at different labora-
tories [16, 17, 39, 40) indicate that normal activity of a single
neuron is dynamical chaos.} For instance, one of typical time

series of the membrane potential of a single neuron of -

lobster’s CPG is given in Fig. 1 [40]. Analysis of a rather
long time series (duration of about 1 min) confirms that the
given chaotic series is, actually, generated by a dynamical
system. In other words, the observed chaos is a consequence
of the dynamics inherent in the neuron and is not caused by
noise. The phase portrait of a limit cycle (a strange attractor in
this case) reconstructed from this time series is presented in
Fig. 4a. One can see that the strange attractor is embedded
into three-dimensional phase space. The low dimension of the
chaotic signal generated by lobster’s neuron is also verified by
direct calculations of the Lyapunov exponents. Such a series
possesses only one unstable direction (A, =~ 1.5, A_ =~ —2.0)
(Fig. 4b). Thus, the Lyapunov exponent of the timé series D,
is approximately equal to 2.75, which does not contradict
possible embedding of the reconstructed attractor into three-
dimensional space. -

Similar results follow from experiments on a single
neuron, pacemaker of the Onchidium mollusc [16), as well as
on other neurons (see the literature cited in Ref, [39D).

Observation and confirmation of the fact that an
individual neuron is a dynamical system generating chaotic
pulsations give rise to many questions. What mechanisms
are responsible for regular (or, at least more ordered)
behaviour of small neural networks and why? We expect
that the dynamics of an ensemble of chaotic oscillators must
be more complicated (certainly not simpler), than that of a
single chaotic neuron. What is the minimal number of
chaotic neurons in CPG for its dynamics to be regular?
Finally, what does Nature need a chaotic neuron for? We
will attempt to answer these questions by considering in
detail a minimal neural network consisting of two coupled
neurons only.

3.2 Regular and chaotic dynamics of two coupled neurons
For elucidation of the mechanisms of the phenomena
observed, the model for a chaotic neuron must be “as simple
as possible but not simpler”. We think that the Rose—
Hindmarsh model (1.3) meets this requirement.

1 In analysis of individual dynamics, the neuron is isolated from its
neighbours either physically (removed from the ganglion) or chemically
(the neurons connected to the one of interest are strongly hyperpolarised
and, hence, exhibit no activity).

1 The Lyapunov dimension is calculated as follows. The Lyapunov
exponents are arranged in descending order 4; > 4, > ...0... > An.
The amount of stable directions needed for compensation of stretching
by contraction is taken into account. The attractor dimension D,
determined in this fashion lies between m and m 1, where m is the
number of the exponents in the sequence given above, whose sum is still
positive but becomes negative on addition of Am+1. The fractional part d of
dimension Dy=m+d (d<1) is found from the equality
Z:"_‘ Ay + Apy1d =0, :

9 These words of Einstein are known to refer to theory, but we think they
are also true for models.

-2 forw

.0 ‘5 10 15 20 25 30 35 40 45 50
Time, ms

Figure 4. Features of deterministic chaos generated by the LP neuron [40):
(2) state space reconstruction from a long time series, this is a strange
attractor; (b) the solid lines represent the Lyapunov exponents of an
isolated LP neuron and the dotted lines represent the Lyapunov exponents
of a LP neuron controlled by a inhibitory coupling from a PD neuron
>0 =01 =-2).

3.2.1 Electrical coupling. We first address electrical coupling
that is more familiar to physicists. Two electrically coupled
chaotic neurons of the form (1.3) are described by the
following equations (b = 1, ¢ =1) [17}

% = +ax¥-—x::——r| + I~ [€+'](t)](XI "'XZ): (31)

jl;:l—dxf—-y,, 21=r[s(x1—xo)-—21],

jz,:._yl-{.ax%—x;—rz-{-f—' [e-{—)](t)](Xz-X]),

Vr=1l—dd -y, 5 =r[s(xz—xo)-—zz]. (3.2)
Here € characterises the value of coupling that is interpreted
as synapses conductance and n(r) is a weak Gaussian noise
with zero mean. -
Electrically coupled chaotic oscillations received much
attention in the last 10~ 15 years (see, e.g., Refs [7,41,42). It
is known, specifically, that such a system possesses an
invariant manifold specified by the conditions x, () = x2(1),
(1) = y2(1), and z, (1) = 2z3(f). The neurons behave identi-
cally on such a three-dimensional manifold of the sub-
system (the mismatch signal is zero). If this manifold is
stable, then chaotic synchronisation is established in the
system [7]. One can show that coupled Rose—Hindmarsh
neurons (1.3) are also chaotically synchronised [17] at
sufficiently strong coupling. Theoretical analysis is rather
simple in this case. We consider a system of equations for
the variables u(r) = x;(1) — x2(1), v(r) = 3, (1) - »2(1), and
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w(t) = z,(¢) — z2(r). By constructing the Lyapunov func-
tion
V()?  2au(r)®  w(e)?
L(t) = 5 + R

we can readily verify that this system possesses a stable
equilibrium state (u, v, w) = (0,0,0), i.e. dL/d¢ < 0 when

2rs '

€> % max [-—3x|(t)x2(r) - (% - a) (1 (D) + x2(1)) + %] .

(3.3)

Since x () and x;(¢) are limited, it follows from (3.3) that the
electrically coupled Rose—-Hindmarsh neurons are stochasti-
cally synchronised for sufficiently large €.

This is also confirmed by numerical experiments. If we
omit from consideration a small interval ¢ in the neighbour-
hood ¢ = 0.2, where the neurons behave regularly (Figs 5a,b),
then the neurons are not synchronised at weak coupling. For

€ < 0.5, the neurons are chaotically synchronised. It is”

‘intermittent synchronisation’, i.e., it breaks every now and
then (Fig. 5c). For strong coupling (e > 0.5), the neurops are
completely chaotically synchronised (Fig. 5d). As an eStimate
for the extent of synchronisation in these model experiments
we can use a mean root square of the distance between the
time series produced by coupled neurons

N,
D(1,€) = —NLZ[xl (k) = Exalk + )]
5 k=1

(3.4)

Here 7 is the temporal shift providing the minimal value of D?
-and N; is the total number of points in the time series. This
estimate of the extent of synchronisation is convenient for
description of the ‘coordination’ between pulsations with
arbitrary phase shift relative to each other. The constant
coefficient ¢ is employed here to reduce the compared time
series to one amplitude level. We emphasise that the effects
described above that arise at electrical coupling of chaotic
neurons are not specific for biology only. Similar phenomena
were also observed in different electronic experiments (see,
e.g., Refs [41, 42]).

3.2.2 Reciprocal inhibitory coupling. This type of coupling is,
evidently, the most typical one in small neural networks, in
particular, in CPGs (Fig. 6). The key role in coordinated
behaviour and regularisation of dynamics of the coupled
chaotic neurons belongs in this case to chemical synapses. In
the context of modelling, it is essential that the coupling
between the neurons occurring in this fashion is characterised
by the presence of a threshold and a constant level of rest
potential. Consequently, in the equation describing the
membrane potential x; of a neuron we add a synaptic current
associated with the action of another neuron (with potential
X3) of the form 4

—[e+n(®)] [x1(1) + V] O [xa(r — ) — X] . (3.5)
Here, as before, ¢ is the strength of the coupling and n(r) is a
small zero mean noise [17]. The thresholding of synaptic
action is taken into account in the Heaviside function ©(w),
X is the threshold, ¥, is the reverse potential, and . is the
synaptic delay associated with the chemical mechanism of
transmission of excitation from presynaptic to postsynaptic
membrane.
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Figure 5. The membrane potentials of two x; (——) and x; (— ——)
electrically coupled Rose—Hindmarsh models [17]: (a) the Lyapunov
exponents depend on the value of the coupling ¢ (b) out of phase
synchronisation of neurons for small region of the coupling (e = 0.20);
(c) intermittent stochastic synchronisation (¢ < 0.5); (d) complete stochas-
tic synchronisation (¢ > 0.5).
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Figure 6. Chains of neurons forming the CPG for: (a) swimming CPG ofa
tritonia; (b) pyloric CPG of a lobster; (c) heart CPG of a medical leech. The
black circles mean inhibitory coupling; T-shaped ends mean excitatory
coupling, sign of resistors mean electrical coupling, and mixing coupling is
represented by a combination of these symbols.
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Consider a rather typical situation of double inhibitory
coupling: from neuron 1 to neuron 2 and from neuron 2 to
neuron 1. Note that such a reciprocal coupling is realised
through two different synapses. The basic equations for such
a neural network are written in the form

fi=ptad—x —z1+1

— [e+r1(t)](x; + VC)Q[xz(t—tc-X],
j1=1-dd -y,
XY=y +axg-x3—z+1

— [e+n(O)](x2 + Ve)O [x; (1 — =) — X],
yr=1—dd~y;, . 2y =r[s(xz — x0) - z2] . (3-6)

7 = r[s(x, — Xg) — z;] ,

Computer experiments for inhibitory coupling used
X =0.85, V. =14, and x; = —1.6. The experiments were
performed at small 1., therefore the system (3.6) demon-
strated only finite-dimensional behaviour. g

Results of the experiments are shown in Fig. 7 and
demonstrate two remarkable phenomena. First of all,
synaptic coupling regularises the behaviour of#individual
chaotic neurons almost throughout the region of variation
of controlled parameters ¢, 1. (except: for a very weak
coupling). It is, indeed, a remarkable fact. The coupling of
two chaotic oscillators usually gives rise to complication of
chaos (i.e., the increase of attractor dimension, the growth of
the Kolmogorov—Sinai entropy, and so on). The degree of
complexity remains at least the same as a result of chaotic
synchronisation. Whereas in our case, the chaos transforms
to order nearly in all the significant parameter region. The
results indicate that this phenomenon is associated with the
action of the synaptic coupling specified in (3.5). But it is only
amodel. Can this phenomenon be observed in experiments on
living neurons? Results of processing of sufficiently long time
series obtained from an isolated neuron-oscillator (LP neuron
of a lobster [40]) and from the same neuron to which a chaotic
signal is sent through chemical synapses from another neuron
(PD, Fig. 6b) are presented in Fig. 4b and Fig. 8. Itis clear that
the chaotic action that is realised through inhibitory coupling
regularises the behaviour of a living neuron significantly. This
also follows from analysis of positive Lyapunov exponents
(the positive exponent decreases by one and a half times in the
case of a controlled neuron, see Fig. 4b) and from analysis of
time spreading between the spikes and of the number of spikes
in the burst (Fig. 8).

Another phenomenon that was observed in investigation

of the system (3.6) is plasticity. As seen from Fig. 7, even a
small variation of the parameters of synaptic coupling leads
to bifurcations and to qualitative changes in the synchronisa-
tion of two inhibitorily coupled neurons. These may be total
phase synchronisation of neurons, antiphase synchronisa-
tion, or synchronisation with a definite constant phase shift.

3.2.3 A little more about plasticity. We shall now briefly

consider the results of the investigations of the dynamics of
~ two chaotic Rose— Hindmarsh neurons at excitatory synaptic
coupling and at mixed coupling (electrical plus inhibitory
couplings) [17, 43).

The dynamics of a neural pair with reciprocal excitatory
coupling may also be modelled by Eqns (3.6), with the only
difference V. =0 thatitis essential however, When ¥, > 0,
the signal transmitted through synapses hyperpolarises the
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Figure 7. (a) Space of parameters ‘synaptic time delay ( t.) — value of the
coupling (€)' for two neurons with reciprocal inhibitory coupling. One can
see four different types of synchronisation illustrated by plate (b). (b) Time
series of oscillations x; (—) and x3 (— — —) of two inhibitory coupled
neurons corresponding to four different region of parameters in plate (a)

T, €[17].

postsynaptic membrane, inhibiting its activity. For ¥, < Othe
membrane is depolarised and the probability of pulse
generation increases. That is why the latter coupling is called
excitatory. Results of the analysis of the system (3.6) for
V. = Oare given in Fig. 9. Three types of synchronous activity
were observed. They differ by the number of spikes in the
bursts, by their duration between the spikes, and by
oscillatory amplitude. Can the diversity of synchronisation
regimes be used to control, for example, the frequency of slow
pulsations of the synchronised neurons? Below we present an
example that demonstrates a fascinating regularity of the
transitions from slower to faster pulsations as the value of
inhibitory coupling is decreased.

We now address a neural pair with mixed coupling:
reciprocally inhibitory and electrical. Such a minimal neural

e eI Sy, TR




April, 1996 Synchronisation in neural networks 345
4000 L 2r 2
| —r 7 a x12 o I} i il i i
ll“ !! i 3"“ 41 4] |‘l
e 1 il i i |
T ” | ; i ‘l’l i ,;!’“ I';I
e e T — — B ‘! ” ‘i” ‘ i [ “l ‘ i
= P e | pm—— 1) i - Y K
— : (P it i
] | -1 i .
2000 \ j
\ i , ) 1 1 1 |
\ { 0 500 1000 1500 2000
1000 |- ]

2000

1000 .

Figure 8. Regularisation of a2 LP neuron dynamics through an inhibitory
action of a PD neuron [40]: (a) Spread in the spike number N and inter-
spike intervals T for an isolated LP neuron; (b) the same for the LP neuron
controlled by the PD neuron. One can see only one burst of 6 spikes or two
bursts of 12 spikes along the time series in the case (2). The maximal
number of bursts contains 8 or 9 spikes. The inter-spike intervals spread
from 2000 to 4000 units of time. The spread in inter-spike intervals is much
smaller for the controlled neuron.

network is described by Eqns (3.6) the right-hand sides of.

which (or, more exactly, the equations for membrane
potentials x, and x;) are supplemented by synaptic current
from electrical synapses as in Eqns (3.1). Analysis of the
dynamics of this model is summed in Fig. 10, where the period
of slow oscillations of synchronised neurons is plotted versus
inhibitory coupling ¢ for fixed electrical coupling & = 0.1
[43]. A remarkable phenomenon is observed: the period of
pulsations increases in a regular fashion as ¢; is increased,
.showing a dependence of the form of a staircase. The steps
correspond to regions of stable pulse generation with a fixed
number of spikes. Each new step corresponds to the change of
the number of spikes in the burst by unity. The value of
inhibitory coupling is known to depend on the concentration
of different chemical substances. Thus, the model gives a hint
how to regularly control the CPG period by choosing a
concentration of the neuromediator controlling the para-
meter ¢;.

4. Rhythmic activity of small neural networks

A neural network is organised so that it is capable of
providing the necessary rhythm of muscular activity even
when there is no feedback signal from the muscles. It was
already noted that a CPG generates a signal that contracts the
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AFignre 9. The membrane potentials x; (——) and x; (~ — —) for two

reciprocal excitatory coupled Rose~Hindmarsh models — the synaptic
time delay is 1. = 4. The synchronisation leads to periodic motion:
(@) 0.05<e<0.1;(b)0.1 €e<0.15()0.15<e < I [I7].
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Figure 10. Dependence of the burst period in minimal nerve system (two
Rose—Hindmarsh neurons with mixed coupling) on the value of inhibi-
tory coupling ¢ at constant electrical coupling €, = 0.1 and 7. = 4 [43].
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muscles used in the rhythmic movements with the required
phase (the historical background and references to early
works can be found in the review [44]). A CPG may also
operate independent of the brain. Animals may produce
complex patterns of behaviour even on decerebration [45].
For instance, decerebrated cats may mate. For the construc-
tion of a CPG theory we should address three key points: the
oscillatory models of a neuron (or a group of neurons) that
should be used for description of the operation of an
autonomous CPG; their interaction; and the fashion in
which the information from sensors and cerebrum are used
by CPG.

These problems have been clarified significantly for lower
animals, for instance, lobsters. Detailed experiments [34] on
the CPGs of pylorical and other stomatogastric rhythms of a
lobster furnished much information about their organisation.
All the neurons belonging to them were identified and it is
understood how they communicate with each other. For
example, a pyloric CPG consists of 14 neurons combined
into 6 functional groups: LP and PY neurons (Fig. 6b) control
contracting muscles, VD and PD neurons govern stretching
muscles, IC neuron determines an auxiliary rhythm, while AB
interneuron is a pacemaker for the operation of t};,e CPG and
is not connected with muscles.

Such a detaijled knowledge of the basic scheme allows for
the construction of a complete dynamlcal theory of autono-
mous stomatogastric CPG of a lobster (see Ref. [34]).

4.1 Space-time symmetry and segmentation. Examples
Even when we speak solely about mechanical movements, we
should bear in mind that a great amount of neurons control
them. Consider as an example a locust. Its flight is a
complicated process involving coordinated movements of
nearly all organs. There are at least five types of rhythmic
activity concerned with aerodynamic effects only [46]:
asymmetric alteration of wing beat amplitude, asymmetric
alteration of the angle of attack of the wings, phase shift of the
wings within the wing beat cycle, bending the thorax,
ruddering of the hind legs. The locust performs these move-
ments in different combinations and uses about 10% of the
neurons of its central neural network [46]. However, even in
this difficult case analysis of controlling processes is not
hopeless. The point is that most of the muscles controlling
the flight are segmental homologues, as are the corresponding
motor neurons and CPGs. Consequently, different types of
mechanical motions follow the same basic principles of
rhythm realisation [46].

The second significant aspect is that all the vital move-
ments possess a pronounced space-time symmetry. Different
types of symmetries may correspond to different speeds, as in
the case of animals that produce locomotion with their legs.
On the -other hand, the space-time symmetry may remain
almost unchanged for an entire range of speeds, for example
in the case of the fishes which swim by means of the travelling
wave that sweeps along their body. An attempt to formalise
intuitive concepts about coordinated and synchronised
locomotion encounter many difficulties. Indeed, for similar
types of oscillations that differ only by a time shift, the latter
can be chosen as a measure of phase shift. For nonidentical
oscillations, the phase difference is as undetermined as the
phase itself, although we can speak about mean synchronisa-
tion [7, 17} (see also Section 3). It is possible to choose a
reasonable start even for such oscillations having different
time patterns. For instance [47], if all the animal’s extremities

contact the surface only once per period of locomotion, then
the instant of this contact may be chosen as the origin of the
phase. This already enables one to pgive a qualitative
description of space-time symmetry. Figure 11 gives a
schematic representation of the paces typical of four-leg
animals’ locomotion. Figure 12 displays some of them using
an example of the animal of the authors’ preference.
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Figure 11. (a) Phase relationships between limbs: J -— step; 2 — trop; 3 —
amble; 4 — slow gallop; 5—6 — different types of fast gallops; 78 —
different types of jumps. (b) Sketch of coupled oscillators with five
different symmetries. The symbols O and [J depict two different types
of oscillators, the lines ——, - -+, === represent three types of coupling
[471.

Unfortunately, the mechanisms of CPG operation in
higher vertebrates are not completely clear in spite of joint
efforts by experimentalists and theoreticians. Let us now
address less exciting but more advanced investigations of the
animals that have pronounced segmented structure and
simple space symmetry. The general neural organisation of
locomotion in vertebrates is very comservative both to
interspecific changes and evolution. Consequently, lower
vertebrates may be regarded as models of higher species.

Locomotion of the animals with segmented structure of
neuromuscular system (fishes, worms, crustacea, and the like)
consists of repeated sequences of similar coordinated move-
ments of different segments. Such a movement for fishes is a
form of a travelling wave propagating along the body at a
constant speed. The waves conserve their features even when
the speed of swimming is changed, so that the wave number
ranging from 0.6 to 1.0 [48] is constant along the body length
of the swimming animal. The speed is controlled by the
frequency and is approximately proportional to it (Fig. 13).
Naturally, the range of speeds and frequencies depends on the
type and size of fish. For example, for trout the frequencies
range from 3 Hz to 25 Hz. Variations of the amplitude of
movements are pronounced only at small speeds when it
decreases (Fig. 13) [48, 49]). Such 2 motor picture is not a
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Figure 12. Trop (a), slow gallop (b) and fast gallop (c) [47]. ‘

passively propagating wave. It arises as a result of contraction
of the muscles controlled by coordinated motor neurons. As
the fish moves forwards, these contractions occur from
segment to segment with a nearly constant phase shift, and
do not depend on frequency. This assures constant wave-
length and propagation velocity along the body.

The phase ratios between the segments were first
described for a dogfish shark [50], and later for eel, trout,
dace [48], lamprey [51, 52], and frog larvae [53]. The fishes
have a minimal delay of 1-2% per each segment during
swimming without change of direction, although this value
may vary and even be negative, thus providing swimming
backwards [50].

Observation of evolution of the animals at early stages
and comparison of the changes in their neural networks and
space-time symmetries show how learning proceeds. For
example, the earliest stage of frog larvae development is the
stage of irregular movements which is then replaced by the
stage when the muscles along one side of the body are
contracted simultaneously to form a C-shaped bending that
__turns in different directions alternately. At a later stage,
movements of this type are transformed to a travelling wave
(for fishes) or to a standing wave (for salamanders, Fig. 14). A
lamprey, like frog larvae, learns to swim in an optimal fashion
by replacing a standing wave by a travelling wave at maturity.

4.2 The mechanisms of intersegmental coordination

The mechanisms that may be used to explain the emergence of
unidirectional waves with constant intersegmental phase shift
include, among others, a gradient mechanism, a mechanism
of ‘slave’ oscillator, and a mechanism of nonreciprocal
couplings.

4.2.1 Gradient mechanism. Consider, as an example, the
swimming system of a lobster. It was hypothesised that the
phase shift between the flaps of the fins is a result of a smooth
dependence of natural frequencies of neural centres on
coordinate along the body [54]. A natural model for the
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Figure 13. () Frequency f(A) and period T (O) of lateral displacement of
the animal V. (b) Phase (@) of lateral displacement of the body V for
different distances to the head L [48, 49].

Figure 14. Wave motion of the animal — travelling wave along the body of
the shark (a) and standing wave along the body of the salamander (b).

CPG realising such a mechanism is 2 chain of coupled
oscillators [55]. Such a model also allows for the fact that
rhythmic activity is conserved in small isolated portions of the
spinal cord (e.g., in 1-5 segments of a lamprey [49]). It is
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essential that the rhythm generated by such a chain is
autonomous. The rhythm parameters in experiments change
only slightly under the action of external forces and are
rapidly restored when these forces are eliminated. In
particular, fictive swimming of a lamprey disturbed by
forcing is restored in a few periods [56, 57], which is inherent
in oscillators with a strongly attracting limit cycle (see, e.g.,
(58)).

Analysis of the model in the form of a chain of phase
oscillators demonstrated [59] that the phase shift along the
chain is not constant, although a travelling wave is formed in
such a system. However, the gradient (of frequencies)
observed along the spinal cord makes us take this mechanism
into account even when it is not primary.

4.2.2 Slave oscillators. In the frames of a model for a slave °

oscillator, a travelling wave is formed if at least one oscillator
has a frequency higher than the remaining portion of a
uniform chain (Fig. 15). This master oscillator initiates the
one following it (slave oscillator) with a definite phase shift,
and so on. Apparently, the phase shift will be constant for the
remaining portion of the uniform chain of segments. This
model for a spinal CPG is especially attractive in that
different regimes of swimming are readlly Fealised in it,

especxal]y switching over from swimming forwards to swim-

ming backwards, for which it suffices to,increase the level of
excitation of one neuron-oscillator. The hypothesis of slave
oscillator [60] is also confirmed by experiments on isolated
spinal cord of the lamprey. The key points of these
experiments are as follows [46]. Each segment may be made
the master one by increasing the level of excitation (and,
consequently, frequency). The influence of the master
segment is distributed along the spinal cord and is retained
after it is divided into portions, each portion being capable of
demonstrating fictive swimming forwards and backwards at
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Figure 15. Phase lag in a chain of oscillators (¢): (a) with equal frequencies
(/= 1) and non-reciprocal coupling; (b) with reciprocal coupling and
master oscillator of higher frequency; (¢) the dependence of the phase lag
(o) on the number of oscillators along the chain n[55),

appropriate local forcing. The phase shift at local forcing is
the same for all segments until their excitation level is uniform
and smaller than that of the master segment. These observa-
tions agree rather well with analysis of a CPG model [61]. The
segments are synchronised if their excitation levels are
identical. If the excitation level of one of the segments is 1-
5% higher, this segment becomes the master one, independent
of its position in the chain. All the other oscillators are slave
ones and have a constant phase shift between them in both
directions from the master segment. Results of modelling
according to which the higher the excitation levels of master
and slave oscillators, the larger the phase lag, also agree with
experiments. For a given difference of excitations between the
master and slave segments, the phase shift does not depend on
the excitation level and, hence, on frequency In other words,
the wavelength of the travelling wave along the lamprey body
‘will be constant irrespective of the speed of swimming.

4.2.3 Intersegmental coupling. The two mechanisms discussed
above are based on the effect of the/intrinsic parameters of
segmental oscillators on mtersegmental phase shift. However,
the phenomena observed in some experiments cannot be
reduced to these two mechanisms. Let us consider, for
instance, a leech in which oscillations of an isolated segment
of the spinal cord have some peculiarities as compared to their
behaviour on the whole. This makes us to reject the
supposition that the intersegmental coupling is weak [62-
64]. These characteristic features are: excitation of oscillations
in a single element is hindered and needs strong stimulation;
the episodes of fictive swimming are very short (of about
several seconds as a rule) in a completely isolated centre; the
phase relationships between isolated cells inside segments
differ. from those in the segments which are part of long
chains; the oscillations of the membrane potential of an
isolated segment are strongly deformed in shape as com-
pared to the natural one.

These facts indicate that, although a neural network
generating swimming movements of a leech may be regarded
as consisting of individual segments, the coupling between
them is strong. Besides, the couplings between the segments
are not local, they extend to remote segments too. Experi-
ments aiming at determining the range of couplings employed
sample blocking of couplings or blocking of oscillations of
neural centres, when intersegmental pulses could propagate
through remote couplings escaping the blocked portion. Both
the ends of the chain remained synchronised even when five
segments were blocked, which indicates that the couplings are
indeed global [64].

The three mechanisms described above do not contradict
each other, in principle, and may be realised in different
combinations.

4.2.4 Sensory feedback. The intersegmental coordination
analyzed above does not take into account the effect of the
feedback that transports information from sensor neurons to
CPGs. Sometimes these effects are significant. For example,
such a feedback is, evidently, the cause for different phase
shifts of a swimming leech and of the spinal cord at fictive
swimming (12° and 8° per segment, respectively) [64]. Such an
influence of sensory feedback is also manifested by the
behaviour of animals in extraordinary situations. For
instance, a dogfish shark whose nerve cord has been severed
behind the head and which has been deafferented along more
than half the length of its body will swim for hours without
any stimulation. Its autonomous rhythmic activity is also




April, 1996

Synchronisation in neural networks 349

confirmed by the fact that the parts of the body separated by
the region of deafferentiation are well coordinated even when
the animal is rendered motionless by injection of curare that
paralyzes the muscles [65]. On the other hand, the sensory
feedback affects the rhythm and amplitude of swimming
CPG. If the tail of the paralysed shark is forced to oscillate
with a frequency different from that of autonomous CPG
rhythm, then the signals from the CPG will have the
frequency of external forcing (1) [66].

Other examples of sensory feedback leading to CPG
synchronisation, are also available. In this case, both ideal
one-to-one synchronisation and intermittent synchronisation
(when the periods of CPG output and sensor input coincide
only part of the time) are possible, if the periods are close. Let
us consider some examples of extreme influence of sensory
feedback that may be useful for testing the adequacy of the
models proposed. Intriguing cases of fictive swimming of an
isolated spinal cord of lamprey were described in Ref. [59]. On
injury of the spinal cord, its portions above and below the
injured spot were synchronised at 2 : 1. Analogous effects
were observed for animals with four limbs. A swimming turtle
usually chooses a pattern of movements similar to land
animals: the diagonal legs move in phase and two diagonal
pairs are phase shifted by half a period relative to edch other.
In definite laboratory conditions, the front leg of the turtle
may move at a double frequency relative to the hind leg on the
same side of the body [67].

Still another series of investigations is concerned with the
use of a treadmill {67~70]. It was shown in Ref. [68] that
locomotion (walking and running along a moving band) of
decerebrated cats was controlled by electric stimulation. As
the stimulation was increased, the cats could change their
pace from trot to gallop. These investigations were modified
by using a split-belt treadmill, each belt moving at its own
speed. Until the speeds differed by no more than 2—3 times, a
1 : 1 synchronisation of hind legs was observed. But when the
difference amounted to 4—6 times, the 2 : 1 synchronisation
became stable. This phenomenon was analysed in Ref. [71] on
an example of five possible variants of four model coupled
oscillators (Fig. 11b). Theoretical group analysis verified that
systems I and 3, actually, allow for bifurcations of symmetry
breaking as a result of which a 2 : 1 synchronisation occurs
between different subsystems.

In conclusion we can say that a motor system consists of a
neural control network, extremities and/or body with
muscles, and sensory feedback. In the case of repeated or
stereotype behaviour, CPG controls rhythmic activity even in
the absence of sensory feedback. Real behaviour is a product
of joint action of a neurophysiological system, in which the
CPG transmits the signal to the muscles through motor
neurons and the axons of the sensor neurons transport the
sensor information back to the neural network. The motor
neurons are output (passive) elements of the CPG and do not
take part in rhythm formation. The periodic oscillations
generated by neurons from different segments may be
partially or completely synchronised, depending on external
conditions.

4.3 Phase description. General idea

The phase description of weakly coupled oscillators is well
known [72] and is broadly employed for construction of
different models, including CPG models. It is based on a
supposition which merely means that oscillators demonstrate
stable periodic motion even in the absence of coupling, while

interaction leads to small deviations from this periodic
behaviour (limit cycle in phase space). The fundamental
features of phase models may be explained as follows {72,
73]. A limit cycle corresponds to stable periodic motion, and
its state is completely determined by the phase g, i.e., by the
coordinate mapping the points on this cycle. On choosing the
appropriate time scale, the equation dx/d:= F(x) for

periodic motion x(¢) = x(¢ + 2r) may be represented in the
form

do

X = Xp ((p) ’
where x = Xo(¢) is the orbit of limit cycle specified parame-
trically. The phase introduced in this fashion may be general-
ised to the trajectories close to the given limit cycle. To this
end a thin tube is chosen in the neighbourhood of the limit
cycle and its scalar field ¢(x) is determined such that

d
—df = grad, pF(x) = (4.2)
t

For a perturbed system

d

—5 = F(x) +ep(x, 1) (4.3)
we have

de

57 = &ady 0 [F(x) + ep(x, )] = o + ex(0) p(x, 1),
or, to the terms o< €2,

d

=0 +a()p(xl).1), (44)

where the functions periodic over ¢ stand in the right-hand
side. If the perturbation p=73 Vy(x;, ) is caused by
interaction with the oscillators flavmg similar features
(w; = wp + 26w;, where dw; < wy), then to the same approx-
imation we have

. .
—c-lé?- =w;+€ Z [zl'((Pi) V(e (Pj)] ’

Jmt
i

(4.5)

where Vii(o;, ;) = V,-j(xi(tpi),x,-(tpj)) are the functions peri-
odic over ¢;.

Obviously, the phase perturbations y; = ¢; —
slow (ox €):

wt will be

a5
4 ez z(Y; + 1) Vi(ot + §; 0t + ;) + o] -
-

Then, averaging over period T = 2n/w gives
d
‘Ili = ZHv('I’l 'I’;) + edw;, (4.6)

where

2n
Hy— ) = e 52 [ 2@+ v Vil + vt + v ac.
4.7
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Coming back to the original total phases ¢; = t; + wr we
find the songht equations

N

T =w;i+ ZlHij(q’i - ‘Pj) . (4.8)
o

Methods for calculation of the functions Hj(£) were

described in Ref, [21]. In particular, for coupled Van der Pol
equations

X+ 5()8, — I)J'C,' -+ (1 -+ 5w,~)x,-
= [e1 (ki1 — 2% + Xi1) + €201 — 2% + xi1)

+ €3(Eig1 — 2% + %i-1)] (4.9)

" the function of coupling is
H(p;) = e sinG; — (& — &3)(cos@; — 1),
@i = @iy — @;- (4:10)

Consider an example of how these equations may}e used.

4.4 A chain of identical oscillators: model for a swimming
CPG of lamprey s
A model system for controlling intersegfnental synchromsa—
tion must take into account principal dynamical mechanisms
and, of course, fit the available neurophysiological data.
Consider a swimming CPG of a lamprey. We represent the
CPG as a .chain of n identical oscillators and take into
consideration only couplings with the nearest neighbours
[74, 75}

do,

i AP

dr o+H ((01):

d

“%"’”’HJ'(@HH'(—'@), 1<k<n, (411)
do o

——a-tﬂ::w+H (_gon—l)a

where H~(—@) and H* () are the functions describing the
action on the oscillator of the neighbours preceding
(descending action) and following it (ascending action).
From the conditions of experimentally observed stable
synchronisation with a constant phase shift along the chain
two limitations are imposed on the functions H+(¢) and
H~=(—) [75}): (1) There exists a finite interval of values for @
‘on which H* (@) and H~(—@) are, respectively, monotoni-
cally increasing or decreasing functions that vanish at some
points @y and @, inside this interval (H*(gz) =0;
H~(~%.)=0); (2) At least one of the inequalities:

(@) <0 or f2(@) > 0 is fulfilled for the function f{p) =
F+ )+ B Ca)/2.

When the above conditions are fulfilled (see Fig. 16), the
system (4.11) is stably synchronised de,/dr=Q with
intersegmental shift %, that is approximately equal for all
k, except the near vicinities at the ends of the chain (Fig. 15).
This shift is equal to ¢, or Py, depending on the
dominating interaction: the ascending

H*(®,)| > |H (=@g)] or the descending one
H~(~3z)| > |H*(+.)|. The synchronisation frequencies
are, respectively, 2 = w + H™(—@R) or Q=+ H*(F.).
In a noncrude case |H~(~@g)| = lH *+(@L)|, the dependence

~n/4 0 n/4

Figure 16. Example of the functions H* (%) and H ~(—), which satisfy the
conditions discussed in the text: ———— H*($); - — ——H "~ (~§); —
—f.

P, is determined by details of couplings and possible small
spread of intrinsic frequencies.

Comparison of the model and results of experiments on
controlling fictive swimming of lamprey shows that the
ascending couplings dominate. Due to a varying value of
ascending couplings, the model (4.11) makes it possible to
choose the intersegmetal shift so that only one wavelength,
indeed, exists along the chain. However, there is no mechan-
ism to provide such a choice of coupling in this model.
Perhaps, the key role in organisation of a needed phase shift
belongs to remote intersegmental couplings [57, 76 ~78].

5. Synchronisation of neurons in the cortex

5.1 Possible role of synchronisation in information
processes

Recent experimental investigations indicate that oscillations
and related synchronisation processes may play a significant
role in the brain, primarily, in perception and information
processing. Here we speak only about processing of the
oscillograms generated by individual neurons or spatially
localised groups of neurons rather than about the averaged
oscillatory activity of the brain that is usually associated with
analysis of electroencephalograms (see, e.g., Ref. [79]).

The intrinsic oscillatory activity of localised portions of
the cortex may be caused either by the activity of individual
neurons or by the interaction of nonoscillating neurons
forming a pair due to inhibitory or excitatory couplings. The
Wilson — Cowan model (1.4) is an example of a model which
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describes pulsations of such a pair. This model is used as an
elementary unit for a large number of more complex
dynamical systems which allow for a better understanding
of the potentialities of synchronisation processes in the cortex
{80].

It should be emphasised that neurons and neural
ensembles in the cortex may be active in a rather broad
frequency range, but a typical interval is from 10 to 50 Hz. It
is a very low frequency in terms of computer engineering: the
operating frequency is by six (!) orders of magnitude higher in
modern computers. Why does the brain act much faster in
non-arithmetic operations such as vision and recognition of
objects? What ideas are realised by Nature in this unique
neurocomputer?

There are no answers to these questions yet. The available
concepts are primarily based on analogous parallel proces-
sing of signals and self-education. Experiments show that the
necessary information is contained not only in the frequency
but also in the phase of pulsations of neurons and neural
assemblies (groups). Evidently, the phase synchronisation
plays the most significant role in processes of perception
and, particularly, visual image processing. p

5.2 Vision: segmentation and binding problems

The principal feature of perception is the ability of the brain
(its system of vision, in particular) to disintegrate the elements
of a perceived picture (or scene) into ‘coherent clusters’, This
allows for coding different objects and even their features and
for their subsequent recognition. Disintegration of images is
referred to as segmentation or organisation of perception.
Whereas unification of individual features into an integral
image or of separate elements into a complete picture is called
binding. The segmentation may be peripheral and central.
Peripheral segmentation is based on the correlation of the
qualitative characteristics of scenes (pictures, images) at the
stage of perception. The central segmentation is based on a
priori (associated with memory) knowledge about the visual
scene.

How does segmentation occur in the brain? This question
is not answered yet. Here we will consider a hypothesis that is
based on the models which use results of recent biological
experiments on an anaesthetised cat brain.

One of the most popular hypotheses today originates
from the experiments on observation of stimulus-evoked
oscillatory activity of the nervous cells responsible for
perception. This hypothesis uses von der Malsburg’s idea
- [81, 82] according to which the object initiates oscillatory
activity of the neurons that code different properties of the
object and are located in the corresponding portions of the
visual cortex. One possible way of solving the problem of
segmentation and binding is synchronisation of neuron
activities which are spread over different portions of the
cortex while they process features of the same object.
Different objects are represented by different groups of
neurons with nonsynchronous oscillations [83, 84).

Experiments verified that on stimulation of different
portions of the retina, the groups of neurons in the primary
visual cortex that are responsible for these portions were
excited and had an oscillatory activity with the frequency of
about 50 Hz. The oscillations of the neurons were synchro-
nous inside each group [85, 86]. Synchronous oscillations of
space-separated groups of neurons in the cortex were
observed in two cases, either at identical stimulation of the
relevant portions of retina or when the receptor fields of the

neural groups space-separated in the cortex overlapped, i.e.

were excited as a result of stimulation of the same portion of
the retina {87, 88]. No synchronisation occurred between the
excited columns of neurons when non-overlapping receptor
fields were stimulated by different objects (e.g., by light bars
moving in different directions) [89].

Experiments show that the groups of neurons in the
primary visual cortex (columns) responsible for the same
portion of the retina have different orientation preferences,
i.e., they are responsible for different directions of motion of
the stimulating object [90]. Experiments on stimulating one
portion of the retina by several objects (light bars) moving in
different directions (i.e., intersecting the field of vision at
different angles) demonstrate that a particular group of
synchronously oscillating neurons corresponds to each
object. These groups are not synchronised [87, 91]. When a
portion of the retina is stimulated by one moving object all the
groups of neurons responsible for this portion oscillate
synchronously. However, there is a conStant phase shift
proportional to the difference in the orientation preferences
of different groups [92].

Emergence of synchronous activity of the groups of
neurons corresponding to different neighbouring portions of
a cat’s retina was confirmed in Refs [85, 93, 94]. Besides,
synchronisation of different areas of the cortex was revealed.
Synchronisation of space-separated neurons inside a striate
cortex was also demonstrated in experiments on a monkey’s
visual system [95, 96). Later, experiments on cats showed that
phase synchronisation may occur between the groups of
neurons located in striate cortex and extrastriate cortex [97]
and even between the columns of different cerebral hemi-
spheres [98]: Results of these experiments enabled researchers
to elaborate several groups of models which may, in principle,
explain the phenomena observed. Some of these models will
be considered below.

5.3 Visual perception and neuron coupling

What kind of couplings between the cortex neurons
provides synchronisation? One of the simplest presump-
tions is that the synchronisation of the activity of indivi-
dual portions of the cortex is attained due to global
coupling of neuroms. It is clear, however, that a neural
network consisting of globally coupled oscillators (‘all-to-
all’) combines the features (synchronises the oscillators)
responsible for different objects simultaneously stimulating
the retina. Therefore such a neural network cannot solve
even an elementary problem of geometrical recognition of
several identical but spatially separated objects. At the same
time, the system of locally coupled oscillators must provide
a good separation of the objects because the neurons excited
by one object are weakly coupled to the neurons excited by
another object. Evidently, it should be supposed that two
types of coupling: local (only with neighbours) and global
(all-to-all) couplings inside groups of neurons are realised in
the cortex simultaneously. The results of the experiment
described in Ref. [98), for instance, indicate the existence of
global coupling.

A rather natural model of a visual cortex which agrees
rather well with the experiments on cats described above [87,
89] was constructed in Ref. [99]. In the frames of this model,
there exist neurons with strong reciprocal ‘all-to-all’ coupling
(inside the group) which are anatomically identified with
columns, but each group (column) is coupled only with the
neighbours:
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P(1) = ag — S (1) + 8a™ + EF(1) + KoI ™ (1)
+Ke y_ I™(0+K >,
m!=m] n'=nd:1
i=1,...,N;
() = lNZ}:a(z — ™). (5.1)
7 E

The model (5. 1) is an example of an integrate-and-fire
model [100, 101] in the frames of which each neuron is
regarded as an integrator of pulses coming to the input from
the other neurons. In (5.1) we used the following notation:
@™ stands for the variable that describes the phase of the i-th
neuron in the column with number nm ($]™ is taken to be
equal to zero if it amounts to 2x); da™ is external forcing on
the column with number nm; £ designates random noise:
Emmy=0, (Em@g™ (£)) = 2D Spum 833t = 1').
The constants Ky, Ke and K, have the sense of the values
of coupling in one column and between neighbouring
columns in two directions, respectively; and t(k) is the instant
of the generation of the k-th pulse by the j-th neuron.

- A scheme of a lattice that consists of 8 hypetcolumns
(index n) each containing 8 columns (index m)'is given in
Fig. 17a. It is supposed that, in each- hypercolumn
(n = const), different columns model therneural popu]atxons
responsible for different directions of motion, i.e. having
different orientation preferences but correspondmg to the
same portion of the retina. Different hypercolumns, in turn,
model the populations bounded with different portions of the
retina. Such a system allows one, to a certain extent, to model
the conditions of the experiments described above.

Computer analysis of (5.1), that includes computation of
thie cross-correlation functions between the oscillations in
different columns, gave (see Fig. 17b) the followmg results:
(i) stimulation produces oscillatory activity in the corre-
sponding columns; (i) all the oscillators in one column
oscillate synchronously; (iii) the groups of columns

(m=const, n € fm1,m]) stimulated simultaneously, which
corresponds to perception of an extended object, oscillate
synchronously; (iv) when two space-se(garated groups of
columns _ (mM=const, n™ € [n{" m = const,
n® e (1", i), m) £ m@) are stlmulated simultaneously,
which corresponds to perception of two short objects, the
oscillations are synchronous inside each group but there is no
synchronism between the groups.

Similar results were obtained in investigations of another
model [102] — a two-dimensional lattice of Wilson-Cowan

neuron-oscillators with excitatory delayed coupling between
close neighbours (Fig. 18a). Each element of this lattice is
described by equations of the form

10°(1) = —av° (1) — wiF[v (1 - )] + (1) +n°(1)
w0(1) = —a'v'() + wiF[p (0 = TN + '), (52)

Here v°(1) and v'(7) characterise the activity of the excnatory
and inhibitory neurons, « describes the relaxation time; 7 is
the synapnc delay; w is the value of synaptic coupling (w > 0);

i*(r) is the external stimulus related to the presence of the
object in the field of v:sxon, and n(r) is weak white noise with
dispersion V[n(t)] B?19/12, where B is the noise level. The
condition (1o = 0.5 ms) < (T = 20 ms), where T'is the period
of typical oscillations, is fulfilled. The function of synaptic
coupling has the form of the Fermi function
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Figare 17. (2) Two-dimensional lattice which consists of 64 columns
described by equation (5.1). Each circle with an orjented segment inside
belongs to column m. The changes in the index n corresponds to changesin
the hypercolumns which correspond to different parts of the retina. The
black circles indicate the columns forced by the stimulus (6a # 0). (b) The
response of the system (5.1) on the stimulus by two different objects of
different orientations [99].

1
exp{c[@ - v(n)]} + 1’

F [v(t)] =

(5.3)

where o characterises its slope, and @ its threshold. Note that
the system (5.2), actually, describes not an individual neuron
but a population of neurons possessing strong inner recipro-
cal couplings (see, e.g., Ref. [103]).

In the two-dimensional lattice of interest, each excitatory
element v} is coupled synaptxcally to the eight nelghbounng
inhibitory elements v Then, the complete model is
written as

d e
T b “vf(1) — w Fluj(r ~ )] +

dr
+ E W{CF[U.;‘:,'(t — T‘f)] 3
Jlmpet
Hapt)

&:l.ld:l

+ () +1°(1)

dv}
o —a—:! = —alvj(1) + weFus (1 — )] + n'(r)

+ S wilFlufu(r— 1))
Sl
Vbl

(5.4)
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Figure 18. Three coupled two-dimensional lattices of the Wilson - Cowan
oscillators. (a) The scheme on the left depicts three neighbour elements
from the same two-dimensional lattice. & is excitatory coupling, © is
inhibitory coupling, and © is external stimulus. The completg4ynchroni-
sation is provided by delayed synaptic coupling of an excifatory neuron
with neighbour inhibitory neurons (dashed line). On the right, the
neighbour elements from three different lattices are shown that are
described by (5.4). The delayed coupling provides “synchronisation with a
constant phase lag. (b) The response of three coupled lattices to two
segments moving in different directions, two segments moving in the same
direction and one single bar moving over two receptive fields. In lower
plots, auto-correlation functions within segments (dotted lines) and cross-
correlation functions between segments (solid lines) of the lattices
subjected to strong external stimuli are shown [102].

Here the synaptic coupling w is supposed to be isotropic.
" Computer experiments on such a lattice as well as on the
lattice in which the elements were coupled not only with the
eight nearest neighbours but also with the neighbours of their
neighbours were carried out in Ref. [102}. When one group of
neurons was stimulated (i ig. #0, 1 £j<ju h €I<h), the
neurons were excited and osc:llated synchronously. Stimula-
tion of two space-separated groups resulted in synchronous
oscillations of neurons inside each group. However, the
oscillations in the groups were phase shifted, with the phase
difference decreasing as the distance between the groups in
the lattice was decreased.
The model (5.4) may serve as a structural unit for more

. --complicated models. For instance, a system of three coupled

lattices each of the form (5.4) was considered in Ref. [104]
(Fig. 18a). These lattices were supposed to have different
- orientation preferences relative to the direction of motion of
the stimulating object. Two lattices corresponded to forward
and backward motions, and the third one had no orientation
preference (meutral lattice). The couplings between the
neighbouring elements in one lattice (left) and between the
elements of three different lattices (right) are shown in
Fig. 18a. Note that, if the delayed coupling from the
excitatory neuron to the neighbouring inhibitory one is
synchronising, then the same coupling between the neigh-
bouring excitatory neurons may give rise to desynchronisa-
tion of oscillations in nerve cells [104].
The.main result of investigations of this three-layer model
(Fig. 18b) is that when stimulated by two objects moving in
one direction (the more so by one extended object), the

oscillations excited in different lattices are synchronous.
When a system is stimulated by two objects moving in
opposite directions, the oscillators in different layers perform
reciprocally non-synchronised oscillations. These results
model correctly the observations in a cat cortex [89].

The analysis of the models (5.1)-(5.4) (as well as close
results obtained in Refs[105, 106]) shows one possible way for
the solution of two problems of vision: separation of the
objects of one visual scene by their location in space and
separation of the objects having different directions of
motion, The first problem is solved successfully in a single
lattice of locally coupled oscillators. Each element of this
lattice corresponds to a definite portion of retina on
stimulation of which a neuron or a group on neurons
demonstrate oscillatory activity. Synchronous oscillations
(with a zero phase shift) between spatially separated elements
mean that these elements are stimulated by-the same object.
The larger the phase difference of oscillations between the
elements of the lattice, the greater the dlstanoe between the
stimulating objects is. i

Note that different objects of the same retina may be
separated by analyzing only spatial position of active
(oscillating) and passive neurons, independent of the phase
differences of their oscillations. It is significant, however, that
synchronous activity of two spatially separated neurons
allows one to identify their coupling with one object directly,
i.e., without analysis of the state of the neurons between them.

The solution of the two problems of visual perception of
objects specified above involves analysis of a series of lattices
(or a chain) of oscillators coupled vertically. Each lattice must
have its orientation preference, with the neighbouring
elements of two lattices being associated with the same retina
element. For example, a system of eight elements having
different orientation preferences was considered in Ref. [99].
Each element was a one-dimensional lattice, ie., one-
dimensional visual scenes were investigated. As noted
above, two-dimensional fields were considered in Ref. [104],
but the authors of that work took into account only two types
of orientation preferences (forwards or backwards).

Synchronous oscillatory activity of groups of neurons of
several neighbouring layers means that they are stimulated
only by one object moving in a definite direction that is close
to the orientation preferences of these layers. A constant
phase shift of oscillations in different layers indicates that the
visual scene contains several objects moving in different
directions. Such objects may be separated even if their
positions in space are close or coincide.

In conclusion it should be noted that a complete three-
dimensional model that considers both a two-dimensional
visual scene (oscillator lattice) and different directions of
motion of external objects (variation of orientation prefer-
ence in the transition from one layer of the lattice to another)
solves several problems of visual perception simultaneously
and is, obviously, very interesting. Evidently, of greatest
significance in such models is the structure of couplings
between the neurons rather than the features of their
individual dynamics.

5.4 Global competition and local synchronisation

Thus, synchronisation in the cortex stimulated externally
includes two essential processes: synchronisation (with zero
phase shift) of the neurons corresponding to one object and
desynchronisation of the groups of neurons storing and
processing the information about different objects. If several
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objects are in the field of vision, then each of them in the
cortex corresponds to their own groups of synchronised
neurons, while the groups corresponding to different objects
oscillate independently. The independence, hbowever, does not
mean non-synchronisation: the phases of oscillations in
different groups may occasionally be close. The probability
of such a coincidence is rather high because very many objects
may stimulate the retina simultaneously. Besides, noises and
the finiteness of the time spent on recognition of the objects
demand to allow for the spread of parameters of the
oscillations inside the group corresponding to one object. It

is clear that the features corresponding to one object must

correlate even if the oscillations of the corresponding neurons
are not quite synchronous. This too increases the probability
of coincidence of oscillations in different groups. Thus, the
process of recognition of images may be prone to errors: In
real life, however, this occurs rather seldom (illusions).
Consequently, there must exist a mechanism responsible for
stable desynchronisation of oscillations of the groups of
neurons corresponding to different objects. Global competi-
tion of the oscillations between groups of locally synchro-
nised neurons may follow such a mechanism [107, 108].

A model for a neural network in the frames of which this
mechanism is carried on was proposed in Ref. [107}:

%i=3x—x} +2~yi+n+L+S;, (5.5a)

Ji=¢ [y (1 + tanh %) - y,] , ! (5.5b)

Z =00 — Z), (5.5¢c)

Si=Y " WikSeo(Xk; Ox) = WiSeo(Z, Ox:), (5.5d)
keN(i)

Seo(x,0) = L (5.5¢)

1+exp[-K(x—@)]

Equations (5.5a,b) describe the dynamics of excitatory
(x;) and inhibitory (y;) cells. Equation (5.5c) characterises the
activity of the global inhibitor (Z) (see Fig. 19a). Finally,
(5.5d,e) describe the coupling between the cells forming the
lattice. The notation adopted in (5.5) are as follows: 7 is
Gaussian noise; I; is the external simulation; wy is the

synaptic weight between the i-th and k-th oscillators; w, is

the synaptic weight between the global inhibitor and the rest
of the lattice; and the set N(i) describes the four nearest
neighbours of the i-th neuron. In Eqn (5.5¢), 0, =0, if
Xi < @, for all i, and o =1, if x; > O, at least for one
oscillator; @,, is the threshold. If the activity of all the
oscillators is below the threshold, then the global inhibitor is
not excited. Consequently, Z — 0 and the oscillators in the
lattice are not inhibited. Otherwise, if the activity of at least
one oscillator is above threshold @,,, then Z — 1 and all the
oscillators in the lattice are inhibited.

The characteristic features of the model. (5.5) are local
excitatory coupling and global inhibitory feedback, which is
responsible for desynchronisation of groups of oscillators
carrying information about different objects.

Numerical simulation of the system (5.5) shows that each
space-separated object (the sun, tree and mountain in Fig. 19b
[107]) at the input (variable I)) of the system (5.5) corresponds
to its own group of synchronised oscillators. It is significant
that theoscillations in different groups are desynchronise and
have a stable reciprocal phase shift (Fig. 19c). The described
features of the model (5.5) agree rather well with the data

g R 0 O
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Figure 19. (2) Architecture of two-dimensional neural network with local
coupling between its elements (o) and a global coupling from one inhibitor
unit {»). (b) The visual image, which consists of three objects (sun (1), tree
(2) and mountain (3)), was used as a stimulus of the system (5.5). (c) Time
dependence of the oscillations in each segment of the lattice corresponding
to different stimulus objects. Oscillations of all neurons belonging to the
same segment is almost synchronous. However, there exists constant
phase shift between different segments [107].

obtained by neurophysiologists. As was mentioned above, the
lateral (or ‘neighbour-to-neighbour’) coupling between
groups of neurons is typical of the structure of the cortex.
Being the prototype of global inhibitor, the thalamus (the
subcortical portion of the brain responsible for primary
processing of visual information) acts on the greatest portion
of the cortex at once.

The model (5.5) solves only one problem, namely, the
problem of segmentation, but does not clarify the problem of
binding the features into an integral image.
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A step in this direction is the model proposed in Ref. [109].
Its structural unit is a lattice of Wilson - Cowan oscillators. A
complete system consists of two lattices of the form

dmf, i
__.aT'_= —m,"lz-{-F(Am,'f2 —Bm,"2~@5—br,’"2+l{fz),
drlkz 1
— = (—c--—1>rlk‘2+mlk'z,

112
“""’d’d,:' = —mj, + F(CM\2 —~ Dm{, - @' — Im] ). (5.6)

Here subscripts 1 and 2 refer to the 1-st and 2-nd lattice,
respectively; k is the number of the oscillator in the lattice;
My = 52, mfy; Fis the Fermi function (5.3); m{, and mk,
are the variables describing activity of the inhibitory and of
the /k-th excitatory cells (group of cells), respectively; and &7
and ©@Ff are the threshold constants for excitatory and
inhibitory neurons. This model has the following typical
features: (i) threshold values for excitatory neurons contain
both constant (@) and variable (—br,’fz) components; (ii)
each of the two lattices contains N excitatory neurons and
only one inhibitory neuron. Thus, each lattice cogtains a
global inhibitor whose role is to provide competition of the
ensembles of neurons excited by different objects.

In the absence of couplings between the ldttices (1 = 0),
the system (5.6) behaves like the model (5.5). The objects that
are sent to the input simultaneously (the variable i{"z) are
separated in time series, i.e., the ensembles of synchronised
oscillators corresponding to them are phase shifted with
respect to each other.

It is supposed that in the presence of coupling (4 # 0) two
lattices describe different features (e.g., shape and colour) of
the objects which are sent to the input simultaneously. There
exists an interesting idea of correct binding of the features of
one object. Suppose that all the signals at the input of the
system (5.6) contain noise components which are correlated
for the signals containing different features of the same object
and uncorrelated for different objects. Then we have

i*(1) = 0.1+ 0.1[p*(r) - 0.5], (5.7)

where p* is a random value in the interval (0,1) and ify = i¥,
i.e. the same signal is used for different attributes of one
object.

Numerical simulation of the system (5.6), (5.7) shows that,
after a short transient process, groups of oscillators belonging
to different lattices and describing different features of one
object are reciprocally synchronised (Fig. 20). At the same
time, a constant phase difference is established between the
groups of oscillators corresponding to different objects. The
described model solves, in the simplest form, two problems:
segmentation and binding of images. Note that the role of
noise is not restricted to binding in such models. The noise,
additionally, increases the number of the objects that may be
segmented simultaneously. The latter was confirmed in Refs
- [109, 116]. We would also like to add that analysis indicates
that the probability of errors grows with an increase in the
number of objects sent to the input simultaneously: the
groups of oscillators responsible for different objects become
synchronised, which gives rise to illusions.

A rather general three-dimensional model (5.4) of visual
cortex that was analyzed in Section 5.3 considers an object
features such as its geometrical position and the direction of
motion. -This model takes into account local couplings
between the elements and assures synchronous oscillatory

LO

0 ' 50 100 150 ¢

Figure 20. Time dependence of oscillatory activity in two groups (solid and
dashed lines) of excitatory neurons when the system (5.6), (5.7) is
stimulated by two different objects. The dashed line represents activity of
neurons that have not been stimulated. Pictures (a) and (b) show
oscillations in different lattices for different features of the input cbject
(for example, shape and colour). There is a constatit phase shift between
oscillations of neurons in the same lattice stimulated by different objects.
However, the phase shift between oscillations of the neurons correspond-
ing to different features (different lattices) of the same object is equal to 0
[109]. g

activity of all the neurons bounded with each object of the
visual scene. Bearing in mind the role of global inhibitor in
providing constant phase shift of oscillations between
different groups of excited neurons, the model (5.4) must be
supplemented with global feedback. The latter will previde
reliable separation of the objects having different spatial
coordinates and directions of motion.

Systems with local excitatory and global inhibitory
couplings of elements are encountered not only in modelling
visual cortex. This situation is also typical of many processes
of pattern formation. The principle of local excitation and
global inhibition is employed in the nature for the formation
of stable spatial structures in different variants and at
different levels. It is one of the basic principles of the initial
stage of morphogenesis, in which local catalysis plays the role
of local excitation, and long-term inhibition may be asso-
ciated, for instance, with fast inhibitor diffusion [110}. An
analogous principle is realised in multicomponent chemical
Belousov—-Zhabotinsky reactors and in segregation in colo-
nies of bacterias and amoebas [111, 112]. Local excitation (or
local synchronisation) supported by global competition lead
to formation of stable localised structures both in Rayleigh —
Benard convection [113] and in nonequilibrium optical media
[114].

5.5 Synchronisation and associative memory

The problem of perception (visual, auditory, etc.) is,
evidently, related to memory. Memory is usually classified
as short- and long-term one. Short-term memory lasts for
about 10 to 20 minutes, after which the information stored in it
is lost, unless transformed to long-term memory as a result of
some stimulation (e.g., purposeful concentration of atten-
tion). We have already mentioned that, according to one of the
popular hypotheses (see, e.g., Ref. [115]), the mechanism of
long-term memory consists of structural changes of synaptic
couplings' between neurons, whereas short-term memory is
related to formation of metastable structures of neural
activity. These may be, for instance, groups of synchronised
neurons. In the context of such models, different synchronisa-
tion patterns in the neural network correspond to differcnt
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images stored in short-term memory. The state of the network
is supposed to depend on the parameters that change with the
characteristic time of the order of the time of short-term
memory. When this time has elapsed, the neural network
acquires an unexcited state, and the information stored in it is
lost, unless an additional stimulus transforms the temporal
synchronisation of the group of neurons to a constantly acting
one by forming new synaptic couplings. The network passes
from the metastable to the stable state: still another attractor
appears in the phase space of the dynamical system describing
long-term memory. The existence of a finite attraction basin of
such attractors enables the system to recognise not only the
image identical to the one memorised before but also a slightly
distorted or incomplete image. This is the associative feature
of long-terin memory.

Judging from the available experimental data, associative
memory is not capable of using different functional compo-
nents of the memorised object in new combinations. Any
complex object is memorised as a whole and the memory
reconstructs either the object as a whole or nothing. Therefore
even the visual scenes consisting of identical elements with
different locations are memorised independently.

In perception of any complex object the response occurs
simultaneously in many portions of the cortex yesponsible for
processing the various characteristics of tHe object. This
means that the object is memorised as a whole (the character
of synaptic couplings is changed) and.in many portions of the
cortex simultaneously. Thus, there again arises the problem
considered above: stimulation must provide simultaneous
synchronous oscillations of several groups of neurons
responsible for different features of the object memorised
before. These groups of neurons must be excited simulta-
neously on repeated perception of the object that is identical
or close (associations) to the remembered one. The models
proposed for solution of this problem are similar to those
considered in Sections 5.3 and 5.4. However, they have a
number of distinguishing features one of which will be
analyzed in more detail.

Consider a neural network {116] the elements of which are
Wilson—Cowan oscillators of the form

dx- x. x. y'
_d'l"'= T;‘i"“‘Fx[Txx‘;.E‘l"‘ TxyG(}:‘) +Si+1}’Hi] ’
dy;

i Yi X
—t e L T, 2T 2
ar Ty+Fy[ y,y—l— ¥y f],

H,—=ajtx,-(1)exp[—-ﬂ(t—t)]dr, i=1,...,N. (58)
0

Here x; and y; are average activities of the i-th excitatory and
inhibitory cells, respectively; F; and F, are the Fermi
functions (see (5.3)) with constant @, 1., and 8,, 1,,
respectively; H; describes the delayed self-inhibition; and the
function G(x) = (1 —n)x+nx? (0 <5< 1) is chosen for
increasing the structural stability of the system (5.8) as the
parameters are changed. The parameters ¥ and j are used to
control the average values of x; and y;. The variable Ij(1)
describes external action, and S;(r) the action of other
neurons of the network:

Si(1) = Zwlkxk(t) .

kA

(5.9)

where wy are synaptic weights.

Suppose that we have p different patterns: & = [&1]Y,,
v=1,..., p. ‘Each pattern may be regarded as a one-
dimensional visual scene consisting of contrast objects
(points & = 1) and background (¢} = 0), i.e.,

&'=(1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,...,0),
& =(0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,1,0,...,0),
& =(1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,...,0).

(5.10)

For memorising such visual scenes by a neural network
consisting of N oscillators we choose the strength of synaptic
coupling following the Hebbian rule that determines wy as a
function of multiplication of stimuli [30, 117}

i =5 (&}~ a)(§ — a), (5.11)

where a is the probability that £} = 1,,(a is usually taken to be
smaller than 0.2). !

Principal results of modelling the system (5.8)—(5.11) are
the following [116]. If the pattern &* that is similar to one of
the patterns stored in the system ¢', i.e. [; = cE,V, O<c<l,is
sent to the input of the system, then all the neurons, for which
&} = 1, are excited and oscillate synchronously. All the other
neurons remain unexcited. In this fashion the system has at its
output the stored visual scene €. Let us now send to the input
a superposition of three patterns &', 2, £ that are close to the
previously remembered structures (5.10):

I=¢(1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,...,0).

Note that the input signal will correspond exactly to the
superposition (5.10) if we set L =g =1Ij4=1. Such a
stimulation excites three groups of synchronously oscillating
neurons that correspond to three patterns at the input. Each
pattern coincides exactly with the ones memorised before, i.e.,
the error of the input signal is corrected. It is significant that
the groups of neurons corresponding to different patterns
(visual scenes) have a constant phase shift. Thus, only one
group of neurons has maximal activity at each time instant.
Consequently, the system (5.8)—(5.11) separates the patterns
at the input and demonstrates them one after the other if these
patterns coincide or are close to the structures stored in the
synaptic couplings between the neurons, i.e., remembered by
the neural network. Note that the proposed model also works
for the case of partial overlapping of the patterns at its input
when &} = ¢} =1, v # u. However, if the number of the
patterns at the input is large (p > 10 in this case), then they
are no longer separated and irregular oscillations are
observed at the output.

It is interesting to compare the above model of associative
memory on oscillating elements with the gradient model
proposed in Ref. [118]. Such a model may be represented in
a simplified form as

dx(r,) _ 6V(x)
de ~  ox '

where F{(x) is the free energy functional decreasing along the
trajectory of the system and r is the spatial coordinate of the
lattice element. For arbitrary initial conditions, the system
(5.12) evolves to one of the nearest local minima in the
coordinates ‘free energy functional — stationary state of the

(5.12)
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lattice’ and stays there for an infinitely long time, provided
there are no perturbations. These minima may be formed asa
result of the changes of synaptic coupling between the
elements in the lattice in the course of learning. Thus, each
minimum may be regarded as an image stored by associative
memory. The transition of the system (5.12) to a stable state
associated with this minimum is actually a process of
recognition. The basic difference between the Hopfield
model (5.12) and the model (5.8)~(5.11) is that the latter is
constructed from oscillating elements.

Of course, the model (5.8)—(5.11) does not pretend to be
exhaustive and universal. However, in the framework of this
model one can successfully solve the problem of long-term
storage of images and their classification according to the
memorised information that is very significant for associative
memory (see also Refs {119, 120]).

5.6 Spatio-temporal synchronisation structures

When discussing the dynamics of a homogeneous neural
network, we considered the case when the neurons activated
by external stimulus are excited and oscillate synchronously
with a zero phase difference in one or several groups
corresponding to the same stimulus, while thg,féthcr (dis-
activated) neurons are in an unexcited state. It is quite

possible, however, and in many cases ever inevitable, that.

the cells which are not stimulated directly may be excited
when a group of neurons or even a single neuron are
stimulated. It is known, for example, that periodic stimula-

. tion of a single point on the surface of the cortex produces an

1

epileptic fit, i.e. generates complex spatio-temporal patterns
of electric activity in a very large volume of the cortex, and
these patterns are retained after the stimulation has ceased
121, 122].

~ Excitation of the cells which do not experience direct
external forcing occurs due to the couplings between them
and, in the case of nonglobal coupling, resembles a wave
propagating in space. It is important that the type of activity
of the excited neurons (the phase shift between the neighbour-
ing cells, and so on) is determined in this case not by the
external stimulus but by the features intrinsic in the network
and, primarily, by the type of the coupling of its elements. Itis
natural to suppose that there may appear the states when the
excited neurons oscillate synchronously but the phase
differences between the neighbouring cells are non-zero and
depend on their spatial location in the lattice, i.e, complex
spatially inhomogeneous structures may be formed. Such

structures (spiral or plane waves, envelope solitons, etc.)

have been observed in many models of active nonequilibrium
media of different origins: physical, chemical, biological, and
so on. Below we will consider in the frames of models of
neural networks stable existence of one of the most nontrivial
structures of this type, namely, a spiral wave.

Spiral waves were investigated theoretically in ample
detail in the framework of the Ginzburg—-Landau model
(see, e.g., Ref. [72]):

d=a+ (1 +ix)V?a - (1 +ip)|a’a, (5.13)
that has the exact solution [115]}
a(r,t) = F(r) exp{i[—-wt +me + Q(r)]} , (5.14)

corresponding to a spiral wave with topological charge m.
Here r and ¢ are polar coordinates; F(r) and Q(r) are known

functions. The model (5.14) is especially attractive because it
describes spatio-temporal dynamics of an arbitrary space-
extended system near the critical value of the parameters
corresponding to the birth of large-scale single frequency
oscillations (The Hopf bifurcation) {72].

The self-sustained spiral waves may arise, in particular, in
excitable biological tissues [123, 124]. For example, travelling
spiral waves were observed in cardiac [125, 126] and nerve
{127, 128] tissues. The authors of Ref. [129] observed and
investigated the spiral waves in a lattice of diffusively coupled
neuron oscillators of the Morris — Lecar type (see Section 1.2).
In all these works homogeneous media in which the spirals
were generated by means of special initial conditions were
considered. The propagating spiral waves may also be
produced by point stimulation of an inhomogeneous med-
ium with homogeneous initial conditions when there are no
atomic barriers [20, 130]. The latter possibility was analyzed
in Ref. [131] based on a model for a neural network consisting -
of integrate-and-fire neurons. We will consider these results in
more detail. .

The dynamics of such a neuron model is described as
follows. Each neuron has a threshold @(¢) and is excited if the
membrane potential exceeds this threshold, otherwise the
neuron is not activated. On being excited the neuron
generates a spike, after which its membrane potential M{(r)
drops to some constant value M. The variations of the
membrane potential between two spikes meet the equation

r%}‘—t’= M+ RIT T, if

Mo +0) =0, if

O<M<@O,

Mt -0)=0, (5.15)
where 7 is the time constz.mt; I and I*™ are the variables
which describe, respectively, the synaptic coupling with the
other cells and external excitation. The variation of the
threshold ©(r) in time is given by the expression [132]

exp[—Ke(t — 1))
1 —exp[—Ke(t—17)] ’

0(1) = @y + (5.16)

where I is the time instant corresponding to the last burst of
the neuron activity. '

It was supposed that the average number of couplings
between two neuroms, A(r), is an exponentially decaying
function of the interneuron distance r in the lattice [133]

A(r) = Bexp(—ar), (5.17)
where « and f are some constant values. The probability that

there exist g couplings between two neurons obeys the
Poisson law

A(rY? exp|—Ai(r

Pyr) = _(_l__g!_[__(_)l , (5.18)

The authors of Ref. {131] took as the initial conditions
unexcited states of all the neurons, one of which was
stimulated externally. Under these conditions, first, a cylind-
rical structure is formed in the system, then it breaks and a
spiral wave arises. The neurons with synchronous oscillatory
phases correspond to the fronts of this spiral wave. The
formed spiral waves are retained even after external stimulus
has ceased, i.e., we can say that they are stable eigenmodes of
a neural lattice.
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Spiral waves were also revealed in the framework of
another model of neural network consisting of N excitatory
ard M inhibitory cells [134]. For description of the dynamics
of the membrane potential of the i-th excitatory (x;) and of
the j-th inhibitory (y;) neurons the following equations were
chosen

-%—? = —-‘/(X,' — VL) - (x,~ - VE)CO| ZF(X]C(I - Tk,-))
k

— (xi ~ Vi)wz Z F(yi(t — ),
!

% =~y = Vi)~ (0 = Ve)os Y F(x(t — wy))
k

— (= Vws Y Flyit —15))
]

i=1,...,N; j=1,...,M. (519)
Here V. is the leakage potential; ¥y and V; are the
equilibrium potentials of synaptic excitation and inhibition,
respectively; w, (@ = 1,2, 3,4) are the constants of synaptic
coupling between the neurons; and t; are the deleys which
depend on the distance between neurons. The authors of Ref,
{134] considered two types of coupling between the neurons:
(1) only to the nearest neighbours and-(2) to the nearest
neighbours and to the neighbours of their neighbours.
Lattices of two types were investigated: (i) with equal number
of excitatory and inhibitory cells and (ii) with predominance
of excitatory cells.

Dynamics of the svstem (5.19) without external stimula-
tion was investigated. It was found that, for certain values of
the parameters, a stable structure in the form of a spiral wave
is formed in the lattice with a rather great amount of neurons.
In terms of neurophysiology, this spiral wave is a depolarisa-
tion wave propagating in the lattice. Some cells are depo-
larised and the others are hyperpolarised in the neighbour-
hood of depolarisation front. It is interesting that, if the size of

Table. Models of neurons

the lattice exceeds a definite critical number, then defect
mediated turbulence arises in the system [135]. This process
is accompanied by formation of a great number of depolar-
isation fronts propagating in different directions which
emerge spontaneously and collapse on collisions with each
other.

Analysis of the models considered above shows that, in
spite of the trivial (oscillatory) dynamics of individual
neurons, their collective behaviour may be quite diverse and
complicated. Patterns of reciprocally synchronised neurons
having a complex spatial form and nontrivial dependence of
oscillatory.phases of individual cells on coordinates may arise
in the system. On the other hand, when external sumulation
occurs (e:g., stimulation of the retina of the visual cortex), the
collective dynamics of neurons becomes simpler and more
ordered. According to onme of the hypotheses [136], the
intrinsic complex spatxo—temporal dynamics of neural ensem-
bles of the cortex is responsible for the sensations (visual,
auditory, etc.) which a human being has in his (her) sleep
when external stimulation is Immmalz Of course, neural
ensembles of the cortex are not, actually, homogeneous.
Their synaptic couplings bear information about the objects
stored in long-term memory. But, perhaps, that is the reason
why the images arising in dreams are not absolutely irregular
but, instead, include qmte real (stored in memory) objects and
events.

6. Conclusions

To conclude it can be stated that the mechanisms controlling
thythmic activity of living organisots are connected with
synchronisation of the interacting neurons that form the
corresponding CPGs. Central pattern generators should be
regarded as a nonlinear dynamical system. There is noise in
such a system but it performs a rather definite function,
namely, 1nh1b1t1ng various exotic regimes of operation of
CPGs whose region of stablhty 1s negligibly small. Of course,
there are still many gaps in the general picture of CPG
functioning. However, a general understanding of the

Model (year) - Basic equations Basic variables Remarks References
1. Hodgkin, e dv = I~ gram*h(v — vngg)— v —membrane potential, m and | These equations describe squid’s | [14, 138]
Huxley (1952) |~ dr h — variables to describe open- | giant axon. The parameter va-
. — ourtly - - ings and closings of Na* ionic | lues and functions ne, Ae, ...
gxr (v = vx) - gu(v = va), channels, n — variable 10 de- | can be found in Ref. [138)
dm  my(v) ~m scribe openings and closings of
ar '—}_m—(;r' ’ K* jonic channel; gy, gk, g1 —
conductances for sodium, potas-
ﬁ - heo(v) ~ h sium and leaking currents, vy,,
dt wv) ' vk, v — reverse potentials for
dn e () — 1 corresponding currents; ¢ —
= °°Tn ® membrane capacitance
2. Connor, This model has an additional current to the The frequency of spikes can vary | [138, 139]
Walter, previous one, given by Iy = —g (v — v,)4%B, much more than in the previous
McKown model
977 d4 Aw(v) A
dl TA(D) !
dB Bu,(v) -B
AT 1)
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Table (continued)
3. Morris dv v — membrane potential, n — | This model was introduced in| [15, 140,
! —-vl+ n — Ut N . ’ . v 170
Lecar (1981) | dr = gufve = o] + ngalvn — 1] generalized variables that de- | [104] to analyze interaction of 141}
+ EmtTen (0) [V = V] + g scribe recovering of activity of | two coupled neurons
dn one of the currents, ¢ — mem-
= A{v) ["oo (v) - "] brane capacitance, Jpp, — exter-
usuall nal current. All variables in the
Y right-hand side of the first equa-
l . . . .
Moo =5 (I + tanh v (O')’m) , tion describe ionic currents
1
Ry = 3 (l -+ tanh (0) )
A= iv) = p, cosh ~ ot (n)
d '.
4. Chay (1985) -C -d_’: = gym hoo (v — vr) + gen*(v —vx)+ | The third term in the right-hand | Three-dimensional model that| {18, 142]
side of the equiation describes the | describes dependence of K* cur-
+gpP(v—vx) +gL{v—v), Ca?*-dependent part of K* cur- | rent on Ca®* ions concentration
dn _ N1 rent p;
dt P ; .
_‘_j_f___m?,,hm(vl"") _ch/(l —'P)(l ___P)Z
dt Tp
dv a4 . :
5. Chay (1990) C,-d“t' = —grastMooh(V — Vgagt) — ‘ 6-dimensional system: n, d, k de- | The model is based on a particu- | [142, 143]
o - )— (=)~ scribe activation and inactivation | lar hypothesis about inactiva-
™ Eslow {1V Vslow) = BRIV T UK like in the Hodgkin-Huxley | tion of Ca?*
~gr(v—vz), model
d Ca?* e
'a{=lf(1 ~f)—)-f[ ]f,
%£= p{.gi"_"ig.(l’l’ii.:f.)._ Icc,C+kc,C.-}.
t o
C = [ca2+]
kca
6. Golovasch C 5= I Z I 13-dimensional system based on | Model of LP stomatogastric| {13, 144,
(1990) i I a more detailetdescription of | ganglion neuron of crab Cancer 145]
pra Ca?* channels borealis
I; = gjalb] (v—1),
da
—d-tl = kj(v) [ajm(v) - a]] ,
-1
Ajeo (V) = [1_+ exp(v sj”j)]

7. Golomb, 7-dimensional system that con- | LP neuron model derived from [145]
Guckenheimer, tains the same currents that the | the previous one that qualita-

Gueron (1993) previous one, but currents with | tively describes the dynamics of
similar dynamics are described | the membrane potential
by similar equations for a;, b; :

8. Wilson, dv, = F(ve, ;) + ongilvr — v, Ve, U ——membrane‘ potentials, ., | It models_ an oscillatory .sysu:m [20,141]
Cowan de n; — recovery variables that de- | that consists of 2 non-oscillatory
(1973) dn, scribe excitatory and inhibitory | populations of neurons

“ar = G(ve, ), — neurons
dy

Tt = Flonm) + ocgelone = vl

dn;

57 = Glnm)

9. Stein, it 1 x; — membrane potential of i| The type of coupling between | [145, 146}
Leung, dr ' T ¥ exp(—fu — byi + bz))| neural oscillator, a — a constant | neurons is defined by f.;. For
Mangeron, Vi = x1 = pyis of time that indicates how the | example, inhibitory coupling
Oguztoreli o ) potential changes in time; f; — | can be obtained by decreasing

Zj =X qzy, excitatory signal at i oscillator, b

i=1,(1+2],[1+3]...

is a parameter that describes

efficiency of adaptation to stimu- | f =

li changes, p and ¢ indicate the
velocity of this adaptation

[ to a value proportional to the
signal of inhibitory oscillator

- Z, Auxp)
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Table (continued)

10. Hindmarsh, | dx =y+al—b—z+1, x— membrane pf)tcntial, y de- | Phenomenological models {17,19]

Rose (1984) dr scribes the dynamics of fast cur-

9y _ Cmdi—y rents, a, z represents the slow
dr ! current dynamic, I — the exter-
dz nal current ,

T rls(x — xo) ~ z]

11. Fitz Hugh %= x— ﬁ — Vit fin x; — membrane potential, f; — | The effect of couplings may be [147,].48]
(1961), 3 excitatory current. These vari- | taken into account similarly to -
Nagumo, Yi=xi+byi—a ables are physiologically mean- | the previious case
Arimoto, ingful. a, b, ¢ — empirical
Yoshizawa constants ’

(1962)

12. Integrate- d L Ioo + Im(f)  for 0<v< ©,|6 — threshold value of poten- | A very simple analog of the {138}

and-fire dr To tial, when vreaches this value the | previous models. It is not based .-
‘models ) =0 il o(5)=6, " | neuron is reset to 0. Time con- | on physiclogy. Actually it de-

usually stant 1¢ and current I, deter- | scribes the interspike’ interval

mine fast neurons fire, Iy, ~— | not the spike itsell
Lpm() =g E S = tike) s synaptic current
spikes
=A 14 t )] .

A1) = [exp (—-;) —exp (—;;

13. Van-der-Pol | %1 + p( — P2)& + £2xa = f{1), o By its origin, this model has| [3,149]

generator o nothing in common with phy-
Xgi = X+ Zlﬂx] siology of neurons. It is used for
j investigation of collective beha-
- viour of neural assemblies, that
does not depend on the choice of
a particular model. Sometimes,
the change of variables x; — x,;
is introduced to model synaptic
coupling [149]

situation and continuously appearing new delicate experi-
ments on both invertebrates and higher vertebrates give
optimistic prognosis for construction of a complete dynami-
cal theory.

Much more complicated is to understand the general
dynamical and information principles behind the operation
of higher nérvous system. In this review we have addressed
problems of mapping visual scenes into patterns of dynamical
activity of the cortex. Today there exist models, relating visual
scenes to patterns of synchronous activity of neural ensembles
in different portions of visual cortex, that do not contradict
the results of experiments. These models show possible ways
for solution of the problem of establishing a correspondence
between excitations in the cortex and observed images.
However, very little is known about how this processed and
systematised information is used by the brain, how it is read
by it. If a map of cortex excitations corresponding to a visual
scene is regarded as a TV screen, then we can recall the words
of Francis Crick: “who watches this screen?”’. Nevertheless, if
we do not keep strictly to the problem of thinking,
particularly consciousness, then we can find an answer to
this question. Memory, that is itself distributed in the central
nervous system, is the consumer (perhaps not the only one) of
generated information. Suppose that we speak about visual
images. If the new-formed image resembles the original one
existing in the memory (in terms of nonlinear dynamics we
can say that the computed image is in attraction basin of the
known attractor-image), then from its previous experience
the nervous system knows what to do with the information

received. For example, a2 mouse in a cat’s visual cortex or a
bright rattle in a baby’s brain. If the image is novel, then it is
recorded in the memory together with the information about
the experience of interaction with this object.

Using the concept of V Turchin [137] we can refer the
described activity of nervous system to associations (or
controlling reflexes), and its next hierarchic stage to control-
ling associations, namely, thinking. It is not clear yet whether
this level of activity of nervous system may be described
completely enough using the language of nonlinear dynamics.
We do not know, in particular, how to pass from a specific
image and functioning of the brain related to a definite goal
that is associated with this image to abstract thinking.
Evidently, a significant intermediate element is a game in
this case {111, 137]. A game models a real image and a real
aim, while the only thing missing here is a signal to real action.
The brain itself closes the ‘image — processing — comparison
with memory — signal to formation of a new image’ chain. It
is already a close approach to abstract thinking.
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