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Abstract 

The phenomenon of spiral pair synchronization by oscillating strips (Nozaki-Bekki solution) in a 2D CGLE 
is investigated analytically. The equations describing the interaction of the strips with one another and with 
spirals are derived. Analysis of the equations shows that under certain conditions the strips lead to frequency 
and phase locking of the spirals. In this case the spiral pair (dipole) is aligned parallel to the strips, with the 
position along the strips being arbitrary. Thus, the interaction with strips may transform the spatio-temporal 
chaos of spirals to the regime of periodically oscillating spatial disorder. The dynamics of circular strips is 
investigated and their lifetime is estimated. The behavior of the spirals bounded by circular stript is analysed. 

1. Introduction 

A broad variety of  regimes existing in a CGLE is sometimes puzzling. By now thorough investiga- 
tions have been performed on cylindrical and plane waves [4,5], hole solutions [2,3,6-10], various 
spirals [11-23], vortex lines [24], phase and amplitude turbulence [25-30], defect mediated tur- 
bulence [31-33], spatial disorder periodically varying in time [34-35], and many others (we can 
also refer the reader to [36-44 ] ). What is this remarkable richness of  behaviour accounted for? We 
believe that physically it is explained by exceptional diversity of  synchronization phenomena and of  
the ways they manifest themselves. Indeed, bearing in mind that a two-dimensional nonequilibrium 
medium described by a CGLE can be considered as an ensemble of  coupled generators whose 
frequency depends on the amplitude of oscillations, we can interpret many regimes as simple or 
complex dynamics of  the frequency or phase locking fronts of  coupled elements of the medium. 
This language may also be used to explain an extraordinary stability of single spirals, as well as the 
existence of  localized turbulent spots [ 1 ]. Here we will investigate the phenomenon of locking at in- 
teraction of  the structures having different topologies within a two-dimensional CGLE. Namely, we 
will analyse the interaction of extended holes with spiral pairs, or dipoles which can be considered 
as elementary objects among a broad variety of  solutions to a two-dimensional CGLE. 
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A new class of  regimes was revealed in the frames of a two-dimensionl CGLE analytically and 
by means of computer experiment. It is time-synchronized spatial disorder of  dipoles. 

Let us write the Ginzburg-Landau equation in the form 

Ota = a + (1 + ia)V2a - (1 + ifl)lal2a. (1) 

The solution in the form of  a single spiral can be written as 

ao = F ( r ) e x p [ - i t o t  + im¢ + i0 ( r ) ] ,  (2) 

where ( r ,~)  are the polar coordinates, m is the topological charge, and to = (a  - f l )Q2 + ft. 
The constant Q is an asymptotic wavenumber of  spiral-radiated waves that is determined by the 
parameters a and fl [45]. Eq. (2) describes an m-armed spiral but only solutions with m = ±1 
are stable [45 ]. The asymptotic expressions 

F ( r )  = (1 - Q2)1/2  (1 -I- o t2 )Q r_l 
- 2(1 - QE) l /2 (o t  - f l )  d- O(r  -2) (3) 

and 

O(r) = Qr + 1 + a f t  l n ( r ) + o ( r  -1)  (4) 
2 ( a - f l )  

are valid for the functions F ( r )  and O(r) at r >> 1. 
Another important solution to the 2D CGLE is a one-dimensional strip that has an uniform 

structure along one spatial coordinate and a hole structure along the other: 

al = A ( x ) e x p [ - i t o t  + i0 (x ) ] .  (5) 

The amplitude A (x) and phase 0 (x) satisfy the equations 

A ( x )  = ~fl  - Q 2 t a n h ( k x ) ,  (6) 

dO 
- ~  = - Q  tanh ( k x ) ,  (7) 

where Q is an asymptotic wavenumber that is related to frequency as 09 = (~ - f l )Q2 + fl and 
depends on the parameters a and fl: Q = (2k z -  1 ) / 3 k a .  The quantity 1 /k  describes the width of  
the strip and k meets the equation: 

[ 4 ( f l - a )  + 18a(1 + o t 2 ) ] k  4 -  [ 4 ( f l -  a )  + 9a(1 + ot f l )]k2+ ( f l - o t )  = O. 

The solution (5 ) - (7 )  is a trivial extension to a two-dimensional case of the hole solution 
that was first obtained by Nozaki and Bekki for a one-dimensional CGLE [2,3]. Stability of  the 
solution (5) in a definite region of  the parameters of  relatively small and finite perturbations of  a 
two-dimensional medium with boundary conditions periodic with respect to y was demonstrated 
numerically and analytically in [1]. 

The interaction of  spiral structures - the solutions (2) to the CGLE in a two-dimensional medium 
- was investigated in detail in [ 13,17,20,21 ]. In this paper we will consider the effects of  interactions 
of  one-dimensional strips (5) with one another and with spirals and will attempt to explain the 
phenomenon of  spiral synchronization by the strip field observed in numerical experiment [ 1 ]. We 
will also show that, besides the structures of  the form (5), quasi-one-dimensional cylindrical strips 
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(that are uniform along the angular coordinate and have a hole structure over radius) may exist 
for rather a long time in a two-dimensional medium. The lifetime of  such strips will be estimated. 

The architecture of the paper is as follows. In Section 2 spirals and strips are described in terms 
of a linearized phase equation and the interaction of strips with one another is considered. The 
collective dynamics of spirals and strips is investigated in Section 3. It is shown that in the presence 
of strips the spirals are phase and frequency locked and are ordered in space relative to the strips. 
Results of  numerical investigation of  the dynamics of a large ensemble of  spirals and strips in a 
square region and in a long band are discussed in Section 4. Finally, Section 5 is concerned with 
analysis of  the behavior of circular strips. 

2. The problem of localization of solutions 

Consider Eq. (1) in the region f ~  = {-oe  < x < ~ ,  -oo < y < ~ }  that is unbounded along 
both coordinates. The asymptotic form of  the solutions (2) and (5) in f~o~ can readily be found 
for two limiting cases. As r ~ ~ ,  the solution (2) (or (5)) tends asymptotically to the solution 
in the form of  a spiral (plane) wave with wavenumber Q and amplitude x / ~ -  Q2. On the other 
hand, when r-- ,  0, we have F ( r )  ,,~ r, O(r )  ,,, r ( A ( x )  ,,~ x ,  O ( x )  ,,~ x) .  The solution (2) ( (5))  has 
a singularity at the point r = 0 (on the x = 0 curve): the field amplitude vanishes to zero and the 
phase is not defined. Thus, the amplitude of the solution (2) ( (5))  changes significantly only in 
the core region and tends to a constant value as r -~ c¢ (x ~ c¢). Alternatively, the variations of 
phase (V arg(a))  for the solutions (2) and (5) are not localized in space and are present arbitrarily 
far from the core region. Mathematically, this is manifested in that the solutions (2), (5) are 
unbounded in the sense of  the integral norm [[ a I[ 2 = fn~ la[ 2 d2r. This situation creates certain 
difficulties for analysis of  the interaction of  structures because the supcrposition principle does not 
hold when the structures are spaced arbitrarily far from one another. 

In order to overcome this difficulty we will employ the following procedure [ 13 ]. We will set 
in (1 )  a = A e  iw-it°t, where 09 is a parameter, and assume that the amplitude A changes slowly in 
space and time. Under  these suppositions we find [46,47] 

A 2 = 1 - (V~)  2 - o~V2~ (8 )  

Ot~ll ..~ ¢O-- f l -Jr  (1-~-Otfl)V2~//-t- (fl  -- Ot) (Vl / / )  2 (9) 

Eqs. (8), (9) give a correct description of  the structure of the solutions (2), (5) throughout the 
space except the core region. Consider Eq. (9). By employing the Hopf-Cole transformation 

a -  fl (10) q/ = - l n ( w ) / c ,  c = 1 + a----~' 

we obtain the linear equation 

Otw = (1 + o~fl) [V21/) - B 2 w ] ,  (11) 

where B 2 = ( a -  f l ) ( ¢ O - - f l ) / ( 1  + a f t )  2. Choosing m = ( a -  f l ) Q 2 +  fl we have B = [cQ[. Eq. 
(11 ) may be written in a gradient form 

t~V 
Otw = t~w (12) 
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V l + a f l  / 
_ ~ [ (Vw)  z + B2w z] d2r, (13) 

where the functional V decreases along the trajectory of  the system (d V/dt = - ffl~ IOtw 12 dZr < 0). 
Now consider the spiral solution (2) and the strip solution (5) to Eq. (1) in the new variables. 

For a single spiral (2) with a topological charge m we have 

Wo -" e-cmCwo(r) (14) 

By using (4) we can readily obtain an asymptotic expression for the function T0 (r): 

W--o (r) = e - B r  1 vz~-7 [1 + O(1/Br)l (15) 

Apparently, the solution (14), (15) to (11 ) is localized in space and I[ w0 I1~< oo. The expression 
for the strip solution (5) upon transformation will take on the form 

wl = Nl (X) ,  N I ( x )  = [ch(kx)] -n/k (16) 

The solution (16) has a uniform structure along the y-coordinate and remains nonlocalized in f~oo 
because [I wl Jl~= ~ .  However, the solution (16) decays exponentially along the x-coordinate 
and, consequently, the superposition principle is valid for analysis of  the spiral-strip interaction on 
appropriate transformation of  solutions to the form ( 14)-  ( 16 ). Besides, formal difficulties may be 
surmounted by considering ( 1 ) not in f ~  but, instead, in the region f~ = { - ~  < x < ~ ,  0 < y < 
Ly} where 1 << Ly < ~ .  Then, we will have [I wl 112= fn Iwll 2d2r < oo. 

This approach that implies passing over from ( 1 ) to ( 11 ) was used in [ 13 ] in the analysis of  the 
interaction of  two isolated spirals. It was shown, in particular, that the energy of  spiral interaction 
is an alternating function of  the distance between them and may have a local m in imum to which 
corresponds a stable state of  a pair of  spirals spaced R0 = const apart. For the spirals having 
opposite topological charges, the center of  mass of  such a system moves with a constant velocity in 
the direction perpendicular to the line connecting their cores. The equilibrium state Ro between the 
spirals depends on the parameters a and ft. In what will follow we will use ( 11 ) -  (13) for analysis 
of  a new phenomenon  - forced frequency and phase locking of the spirals and their arrangement 
in space under  the action of strip field. 

Prior to analysis of  cooperative dynamics of  spirals and strips consider the interaction of  two 
parallel strips with one another in the region ft. The corresponding solution may be represented as 

w = ~ l ( [ X -  Xll)e ~" +~l([X-x2 l )e  w2, (17) 

where Xl and x2 are the coordinates of the centers of  the strips while ¢tl and ¥2 are the phase 
corrections. Note that the solution (17) describes correctly the shock that separates the fields of  
two strips (see, e.g., [6] and the cited literature). On substitution of (17) into (13) we find 

V ---- gl e 2¥1 + e l  e 2~2 Jr-g12 e~¢1+¥2 (18) 

Here el is the self-energy of  the strip: 

el = Lyl +afl2 / [ (Oxwl )2 + B2~12] dx, (19) 
- - O O  
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Fig. 1. Level lines of  the amplitude of  established field distribution for p = 2 and t~ -- 0.2 in the 600 x 80 band. A random 
position of  the strips relative to one another  that  is conserved at long times indicates a very weak interaction of the strips. 

with integration performed along the line x E (-oo,  +oo),  except the narrow region of width 2dl 
in the neighborhood of the core of the strip where Eqs. (8), (9) are no longer valid. Let us find an 
expression for the energy of interaction e12. We will suppose that the strips are spaced rather far 
apart (B[xl - x21 >> 1 ) and x2 > xl. Taking into account that the integral vanishes to zero in the 
region between the strips we have 

+oo 

2LyB2(1 + aft) / ~ l ( x -  x l ) ~ l ( x -  x2) [ t a n h ( k ( x - x l ) )  t anh (k (x  g12 + 1]dx  

x2+dl 

~- 22B/k+1LyB(1 + aft) exp [ -B(x2  - x l ) ] .  (20) 

One can see from (20), to an acuracy of the accepted approximations, that the interaction 
between parallel strips is repulsive and exponentially small. The result obtained agrees well with 
numerical experiments. Eq. (20) was integrated by a pseudo-spectral method [48] based on FFT 
with periodic boundary conditions. The integration domain was taken in the form of a 600 x 80 
band with 2048 × 128 or 1024 × 128 FFT harmonics. Results of  integration for the values of  the 
parameters a = 0.2 and fl = 2 are presented in Fig. 1. Random relative position of the strips 
in the band indicates weak interaction between the strips. It follows from (20) that the energy of  
interaction 8~2 grows linearly as Ly increases. Therefore it can be expected that the increase of  Ly 
will result in the increase of  the average distance between the strips in a box with periodic boundary 
conditions. However, we cannot verify this supposition experimentally because the interaction is 
exponentially weak. 

3. The spiral-strip interaction 

We will carry out our analysis in the frame of the linear equations ( 11 ), as before. Let us restrict 
the number of  spirals to two and represent the solution as a superposition of the fields (14)- (16)  
corresponding to the interacting structures: 

w = ~1 (Ix - xll)  e ~' +~01 (Jr - r011) e -cm'*°' +~'°~ "J¢-~02 ([r - r02l) e -cm2~°2+~'°2 • (21) 

Here ~0i is the angle measured relative to the spiral core with the coordinate r0i = (Xoi,Yoi) and 
xx is the coordinate of the core of  the strip. It should be noted that the constants B entering the 
expressions for ~1 and w0i (see (15), (16)) are different, in general, because the frequency 09 and 
the asymptotic wavenumber Q are different for isolated strips and spirals. We will be interested 
in the synchronization regime when the oscillating strip "imposes" its frequency on the spiral. 
Numerical experiment confirms that such a regime may be stable. Partial synchronization in the 
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form of  frequency mismatch is taken into account by time-dependent phase corrections ~tl, ~t0~, 
and ~02 in (21 ). 

Let us write the functional (13) on the solution (21), like for interacting strips, in the form 

V = 81 e 2~ut +80 e2~u°~ +80 e2~u°2 +~101 e~ul+~u°l +8102 e¥1+l'u°2 +8012 e¥°l+~u°2, (22) 

where go is the self-energy of  the spiral that depends neither on L r nor on the sign of  the topological 
charge mi = ±1, et is the self-energy of  the strip depending linearly on L r (see (19)), el0i is the 
energy of  interaction of  the strip and the ith spiral, and e012 is the energy of  interaction of  spirals 
with one another. Let us assume that the spiral and the strip are spaced rather far apart and replace 
the integral over the entire domain by the integral over some neighborhoods of  the spiral and strip 
cores. Then we will estimate the expression for ~10i as 

elOi = D e  -BIx~-x°il, i = 1,2. (23) 

The character of  the strip-spiral interaction does not depend on the topological charge m; = ±1 
and the energy of  interaction tends exponentially to zero as the distance between the structures 
increases. The constant D, in particular, is determined by the contributions of the spiral and strip 
cores and cannot be found analytically in the framework of  our approximation. 

Assume that as a result of  the interaction, the patterns described above move slowly and retain 
their own structure. We can easily obtain the equations for their coordinates and phases. However, 
prior to derivation of  these equations we will modify the formulation of  the problem. We will 
consider the dynamics of  structures in a region fll = {0 < x < Lx, 0 < y <_ Ly} with periodic 
boundary conditions along both coordinates instead of  an infinitely long band of  width L r. Then 
the energy of  interaction of  the strip and the ith spiral will depend not only on the distance [x~ -x0t[ 
but also on L x -  I xl  -Xoil (the points (0, Y0) and (Lx, Yo) are "glued together" for periodic boundary 
conditions) and may be written as 

eloi = D i e  -BIx~-x°il + D 2 e  -B[rx-lx~-x°d], i = 1,2. (24) 

The expression for the energy of  spiral interaction with one another should be modified analogously. 
We, however, will assume that the distance between the spirals, r12, is much smaller than the 
characteristic size of  the box. Then the additional terms in the expression for e012 may be neglected. 
The expression (24) is also valid for the box unbounded along x (i.e., a band of  width Ly) if  the 
spirals interact not with one but with two strips that bound the region of spiral localization and are 
at a distance Lx from one another. 

We will use the variational form of  Eq. (12) for the derivation of  the equations of motion for 
spirals and strips. We will have 

f ov y ~  (Os, w )si (Osjw)tSsj d2r = - XT" ~ J s y ,  (25) 
.. ~ Osj 
tj [21 J 

where (sl . . . .  , s8 ) = (Xol, Yol, ¢/ol, x02, Y02, ¥o2, xl, ¥1 ). From (25) we immediately find 

_ O V  MO = : (Os ,  w)(Osjw)d2r" Mij~i (26) 
Osj' 

t)l 

We assume, again, that the spirals and the strips are rather far apart. Then the matrix M disintegrates 
into three matrices: two 3 x 3 matrices 
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M ( i )  = i7 A2 0 e 2~°~, i = 1,2, 
0 A3 

which describes the dynamics of spirals, and a 2 x 2 matrix 

0 
M(3)  = ( o l  B 2 ) e  2¢/1, 

that describes the dynamics of the strips. Here we have 

A, = f [Ox (e-cra"wo(r))] z d2r, 

fZt 

A2 = f [0y (e-Cm'¢ ~o(r)) ]  2 d2r, 
fZl 

A3 = f [e -~m'~' ~o(r)] 2 d2r, 
fll 

1 / [Ox (e-cm'm~o(r))] [0y (e-cmm:o(r))] d2r 

~'~1 

and 

(27) 

(28) 

(29) 

B 1 ~- f [~x~ l  (X) ]2 d2r, 

BE = f [ ~ l  (X) ]2 d2r. (30)  

fh 

Note that (29) coincide with the expressions derived in [13] in the analysis of the interaction of 
two isolated spirals. Below we will use the result obtained in [ 13 ] according to which Ai and y do 
not depend on the topological charge of the spiral and Ai are positive. 

Consider the equations of motion for the strip 

e 2~1 BI.~I = -Oxt V = - e ¢/1 +~ol 0Xlel01 _ e~/1+~/02 0xtBl02, 

e 2¥1 B E l l  = -0w,  V = - 2  e 2~q e 1 - e ~//1"~'~01 el01 - e ~1+~°2 el02. (31)  

From (30) follows that the "masses" of the strip are Bt ~ Ly. Since there is exponentially weak 
dependence of the strip-spiral interaction energy el0i on Ly, for Ly >> 1, we have xl = 0. The 
latter means that the strip whose "mass" is much larger than the 'masses" of the spirals remains 
motionless in the interaction. On the other hand, the self-energy el of the strip, as well as its "mass", 
are proportional to Ly. Therefore from the second equation in (31 ) we find 

~/1 = -(2el/B2)t + ~v'~ °) (32) 

By employing (22), (26), and (31) we can easily derive equations for the phase differences of 
the strip and spirals: 
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0t (~02-  ~01) = 203012sh (~02-  ~uOl) + [03101exp(~1- ~01) -03102exp(~ul- ~02)] 

at(Y1 - ~Uoi) = 2(090 - 031) + 0310iexp(~l - ~Uoi) + 03012exp(~oj- ~/oi), i # j, (33) 

where too = 80/A3, 031 = el~B2, 0310i = 810i/A3, and 03012 = eo12/A3. The system (33) has a 
stationary solution 

2(031 --  too)  + 0301203101/03102 

= ~02 - ~ol = In 2(031 030)03101/03102 + 03012' 

Ai = ~1 -  ¥0i = In [(2o91- 2090-03o12e -t-<i) I031oi], (34) 

where +t~ corresponds to i = 1 and - ~  to i = 2. The negative interaction energies 8o12 < 0, elOi < 0 
(i = ! ,2) ,  and 03012 > 2(031 -020) are the sufficient conditions of  stability of  the solution (34). 
Under  these conditions, the interacting structures are fully synchronized: the phase differences of 
the spirals and strips cease to depend on time. If  81oi = el02, then from (33) follows t~ = 0 and 
AI = A2. In other words, both frequency and phase locking occur. 

Thus, a stable regime of complete synchronization of  structures sets in under certain conditions 
in the system that consists of  a strip and two spirals interacting with one another. 

We will investigate the relative position of spiral pairs and strips supposing the structures to be 
synchronized. To this end, we will consider the equation of  motion for the coordinates of  spiral 
c o r e s :  

( A 1 A  2 _ 72 )3¢0i ~- [mi?OyoiSOl2 - A20xoiSO12 ] e+6 -A2OxoielOi e a', 

(A1A2 - 72)))0i = [mi?Oxo,8012 - A10yoiSO12] e -I-t~ +miYOxoi810i c a', ( 3 5 )  

where A I A 2 -  ?2 > 0 in accord with the Cauchy-Schwartz inequality. We will assume that the 
energy of  interaction of  the strip with the ith spiral, 810i ([Xl --Xoi] ), is the function that reaches its 
minimum at IXl -xoi l  = Lx/2  (see (24)) that is symmetric relative to this point and has no other 
extremums in the domain x ~ [0, xl ) t_J (xl, Lx ]. We will specify the problem and consider the 
interaction of two spirals having opposite charges: mi = -m2.  Such a pair is called a dipole. We 
choose the dipole-strip interaction for analysis because the summary topological charge of  defects 
in a system with periodic boundary conditions must be equal to zero. Because in the interaction 
with the spirals the strip remains motionless, we can assume, without loss of  generality, Xl = 0 
and consider, for simplicity, that the spirals which are equidistant from the strip x01 = Lx -Xo2 
assuming Xol # Xo2 and Y01 # Y02. T h e n  8101 = 8102, 0xo,8101 = -0xo28102, t~ = 0, A 1 = A 2 ---- A, and 
for the difference of  the coordinates of  the spirals we have 

( A I A  2 - ?2)Ot(x02 - )I701 ) ---~ - 2 A 2  (Oqxo28012 + Oqxo2/~102eA), 

( A I A 2  - y 2 ) 0 t  (Y02 - YOl ) = -2AlOyo28012, (36) 

In the reference system moving with the dipole's "center of  mass", the spiral motion consists of  
the turn relative to the "center of  mass" and displacement along the dipole axis. It follows from 
(36) that such a motion transforms the system to the stable state Xol = Xo2 = Lx/2,  ]Yol -Yo2l = R0 
where Ro is the distance between the spirals that corresponds to the minimal interaction energy 8012 
(see Section 2). The spiral motion in the "center of  mass" reference system is accompanied by the 
displacement of  the "center of  mass" itself along the y-axis, with the direction of the displacement 
being determined by the sign of  2) (see (35)). In a general case, when the "center of  mass" does 
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not originally belong to the straight line x = Lx/2, the spiral motion is qualitatively different but 
it is accompanied by the displacement of  the "center of  mass" of the spiral pair both along the y- 
and the x-axes and also results in the equilibrium state. 

There is an important circumstance which we would like to emphasize. Consider a pair of  spirals 
located at different distances from the strips assuming o910i > o910j. Suppose that the sufficient 
stability conditions to0t2 < 0, o910i < 0, to012 > 2 (o91 - 090) are fulfilled for the synchronization 
regime. Then we can readily verify that Ai > Aj and ¥0j > ¥0i. Consequently, the ith spiral 
possessing the highest energy (i.e., the spiral that is the closest to the strip) moves with a velocity 
greater than the velocity of the j th  spiral. The difference is the greater, the larger the coefficients 
e¥0J -¥o, and e a, compared to the corresponding coefficients eV0,-~'0~ and eAJ in the right-hand side 
of  (35). Thus the dipole, that was originally turned relative to the strip axis, tends to be arranged 
in parallel to this axis. This allows us to suppose that, in spite of exponentially weak interaction, 
the dipole is quite rapidly arranged regularly with respect to the strip even when the dipole and the 
strip are spaced rather far apart. 

Thus, we have shown that the interaction of  a pair of  the spirals having opposite topological 
charges (rnl = - m 2 )  with one another and with a strip may give rise to their frequency and phase 
locking and in the formation of  the equilibrium state in which the spirals are located along a straight 
line parallel to the axis of  the strip. 

In the system consisting of  a great number of spirals interacting with one another and with 
strips, the synchronization regime means the transition from defect mediated turbulence to a one- 
dimensional (along y)  spatial disorder of  spiral dipoles periodically oscillating in time. Finally, in 
the system containing a great number of spirals and strips located at arbitrary distances from one 
another, the synchronization means the onset of  a two-dimensional spatial disorder also periodically 
varying in time. In this case, the distribution of  the field amplitude is time invariant and contains 
a set of  randomly spaced spiral pairs parallel to the strip axes. Note that in the system containing 
many strips located at random distances from one another, the minimal energy of  the interaction 
of  the spirals with two neighboring strips is not necessarily located exactly in the middle between 
them. This is explained by the fact that the location of the minima depends not only on the nearest 
but also on other strips in the system. 

4. Numerical experiment 

The interaction of  the structures was investigated in the frames of Eq. ( 1 ) integrated following the 
scheme described above in the domain with periodic boundary conditions. The field distribution 
in the 150 x 150 square at a = 0.2 and p = 2 is shown in Fig. 2. The distribution containing a 
strip and chaotically spaced spirals was taken as the initial condition. It is worth noting that the 
spirals are rather rapidly arranged along a straight line (in several hundred time units), in spite 
of  exponentially weak interaction. On completion of this process, the spiral chain, actually, does 
not change its position relative to the strip. A similar picture is observed in the 600 x 80 band. A 
typical field distribution at a = 0.2 and fl = 2 is depicted in Fig. 3. It is clearly seen that the spiral 
dipoles are always arranged parallel to the stip axis. The snapshot of the field at other values of  the 
parameters a = 0.1 and fl = 2 is given in Fig. 4. In this case, the spirals are not synchronized in 
space, instead, each of them retains its own dynamics. It is to be noted, however, that the spirals 
are localized in the region the boundaries of which are spaced from the strips at a distance that is 



M. Bazhenov, M. Rabinovich / Physica D 73 (1994) 318-334 327 

X 
Fig. 2. Level lines of  the amplitude of  established field distribution for p -- 2 and a = 0.2 in the 150 x 150 square. A 
regular distribution of  the spirals demonstrates the effect of spatio-temporal organization under random initial conditions. 

X a 

X b 

Fig. 3. Level lines of  the amplitude (a) and real part (b) of  established field distribution for p = 2 and a = 0.2 in the 
600 x 80 band. A regime of spatial disorder periodically oscillating in time is established when the spiral dipoles are arranged 
parallel to the strip axes and have random (time invariable) coordinates along the y-axis. 

several times greater than the size of  the strip cores. When the neighboring spirals are rather close 
to one another, the spirals located between them have an almost regular distribution in the form of  
a chain parallel to the strip axes. Note that the initial distribution depicted in Fig. 4 for a = 0.2 
and fl = 2 evolves to a regular distribution like the one shown in Fig. 3. 

The collective behavior of  the spirals localized in the region bounded by two parallel strips can be 
easily understood by drawing an analogy with particles in a potential well. As long as the self-energy 
(kinetic energy) of  the spirals is small compared to the "depth" of the well, the spirals are located 
at its bottom, i.e., at the potential energy minimum (see Figs. 2, 3). When the self-energy of the 
spirals is comparable with the depth of  the well, the spirals have chaotic dynamics throughout 
the well except the narrow regions near the strips where the interaction energy increases sharply 
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  t!'11 it l 'l  
X 

X b 
Fig. 4. Snapshots of the amplitude (a) and real part (b) of the field for/7 = 2 and ~ = 0.1 in the 600 x 80 band. Several 
space-localized turbulent spots bounded by parallel strips are clearly seen. 
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Fig. 5. The plane of the parameters a and p. Presented are the Benjamin-Fair limit (dotted line, BF); the long wavelength 
Eckhaus limit with Q(a ,p )  corresponding to 2D spirals (solid line, EH); and the absolute stability limit for 2D spirals 
(solid line, SP) [5,18]. Marked are the values of the parameters corresponding to the regimes observed: (O)  developed 
defect mediated turbulence, the strips are destroyed; ([3) defect mediated turbulence in the region between stable strips 
(see Fig. 4); (A) spatio-temporal organization of spirals in the region between stable strips (Figs. 2,3); (0) quasistationary 
spatial disorder of spirals, the strips are destroyed. 

(Fig.  4) .  W i t h  a still f u r t h e r  i nc rease  o f  the  se l f -energy (due  to  the  v a r i a t i o n  o f  a a n d  f l ) ,  the  
sp i ra l s  t e n d  to  e s cape  f r o m  the  p o t e n t i a l  well.  As a result ,  the  s t r ips  b r e a k  a n d  the  reg ion  o f  sp i ra l  
l oca l i za t ion  ex t ends  to  the  en t i r e  space .  T y p i c a l  va lues  o f  the  p a r a m e t e r s  a a n d  fl to  wh ich  d i f f e ren t  
r eg i mes  o f  co -ex i s t ence  o f  sp i ra l s  a n d  s t r ips  c o r r e s p o n d  are  p r e s e n t e d  in Fig. 5. 
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Let us come back again to the Ginzburg-Landau equation (1) and write it down in a polar 
coordinate system: 

( 'r o,a = a - (1 + ifl)lal2a + (1 + ia)  02 a + Ora "41" -~Oq~q~a (37) 

One can readily see that, for r >> 1, the contribution of  two last terms in the expression for the 
Laplacian is small and tends to zero as r --, oo. The latter allows us to suppose that Eq. (37) will 
have a solution in the form 

a = A ( r -  r0 )exp [ - imt  + i O ( r -  r0)] + O(1/ro) ,  ro >> 1, (38) 

where the amplitude A and phase 0 satisfy (6) and (7) in which r - r0 must be substituted for x. 
For [ r -  r0[ >> 1, the solution (38) tends asymptotically to the solution in the form of  a cylindrical 
wave with the wavenumber Q. Thus, for r >> r0 >> 1, (38) behaves as a spiral with a topological 
charge m = 0. On the other hand, it can be expected that the cylindrical waves radiated inwards 
the circular strip (38) will be absorbed by a shock structure. This supposition is confirmed by 
results of  numerical experiment (see the text below). 

We will investigate the effect of  small perturbations introduced by the components (1/r)Or and 
(1/r  2 )02~ of  the Laplacian on the dynamics of  the solution (38). Let us again employ Eq. (11 ). In 
the new variables the solution (38) takes on the form 

w (o) (r - ro) = [ch [k (r - ro) ] ]-S/k e~, 0 (39) 

(where g/o is an arbitrary constant). It is an exact solution to the unperturbed (in the sense 
V 2 = 02) equation (11 ). 

We will seek a solution to the perturbed (complete) equation (11 ) in the form 

w ( r , t )  = { c h [ k ( r -  ro(et) ) ]}-S/k  e ~'°(St) + E enw (n), (40) 

where the small parameter is e ,,~ 1/r, and ro(et) and ¥o(et)  are the slow functions of  time. By 
substituting (40) into (11 ) and equating the terms for different power exponents of  e we obtain a 
system of  linear differential equations 

8n[ot w ( n ) -  (1 + otp)(Or2r w ( n ) -  B2w(n))]  = H (n), (41) 

where H (n) is the expression that contains corrections from the previous orders of  approximation 
and does not include w (n). It is known that the nonuniform system (41) has bounded solutions if  
its right-hand side is orthogonal to the eigenfunctions of  the system conjugate to the homogeneous 
system. The linear operator L in the left-hand side of  (41) with the domain D ( L )  = {w : w E 
C2; w ( r )  ~ O, r --, oo; OrW(rc) = 0} is self-conjugate in the space of  the functions that are 
continuous on the interval r E [rc, c~) where 0 < rc << r0. Because w (°) and arW (°) are the solutions 
of  a uniform equation and 

--~ Oqr~/)(O)l 'O -I- "//) (0)  ~//0 "a t. (1 + afl)lOrw (°), (42) H(I) 

from the orthogonality condition to the first approximation we have 
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s p a c e  

Fig. 6. A snapshot of  the field amplitude for fl = 2 and a = 0.2 in the 75 x 75 square. The radius of  the circular strip is 
slowly decreasing in time, with the rate of  this process being the faster the smaller the radius. 

Fig. 7. The longitudinal structure of  the field for y = L y / 2  corresponding to the snapshot presented in Fig. 6. Well seen are 
the shocks, one of  which is located at the center of  the circular strip ( x  = y = L x / 2 ) .  

o o  o o  

i'o (Orwt°))2dr = - ( 1  + a f t )  r(Orw ) d ,  ~)o = 0. (43) 

rc rc 

From the first equation of  the system (43) follows ~:0 < 0, i.e., the radius r0 of  the solution (38) 
decreases. Besides, one can readily verify that at r0 ~ e¢ we have 

o o  

rc 

and, consequently, /'0 ---' 0. Thus, as r0 --* ee, the lifetime of  the solution (38) increases without 
restriction 1 

Numerical investigations confirm the result obtained. Eq. (1) was integrated in the 300 x 300 
and 150 x 150 domains with periodic boundary conditions for 512 x 512 and 256 x 256 FFT 
harmonics. A snapshot of  the field is shown in Fig. 6 for a = 0.2 and fl = 2. The corresponding 
longitudinal structure of  the field (y = L y / 2 )  is presented in Fig. 7. It is clearly seen that a shock 
structure absorbing the waves radiated inwards the strip is formed at the center ( x  = y = L / 2 )  

even in the absence of  spirals. The distribution containing several strips enclosed into one another 
(Fig. 8) is also possible but at other initial conditions. The radius of  the circular structures depicted 
in Fig. 8 decreases with time and they vanish one after another. Fig. 9 presents the snapshot of  

I It should be emphasized that we do not investigate stability of  the solution (38) with respect to the perturbations of  the 
solution per se. 
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Fig. 8. Snapshots of the ampiitude (a) and real part (b) of the field for /I = 
?‘-’ 

2, a = 0.2 and T = 700. A few cmzular strips 
enclosed one into another, with the radii slowly decreasing in time, stably co-exist in the 300 x 300 square. 

a x b 
Fig. 9. Time evolution of the spatial ~s~bution presented in Fig. 8 (1” = 1600). c)epicted are the amplitude (a) and real 
part (b) of the field. As the circular strips of small radii are disappearing, a turbulent spot containing the spirals chaotically 
arranged in space are formed in the region bounded by an external strip. 

the field corresponding to the further evolution of the spatial distribution shown in Fig. 8. It is 
interesting that a great number of spiral pairs are born as the inner strips “are collapsing” in the 
region bounded by a circular strip of maximal radius (see Fig. 9). As the outer strip is const~cted, 
the localization region of the spirals decreases, they are partially ordered in space (Fig. 10) and, 
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a x b x 

Fig. 10. Snapshots of the amplitude (a) and real part (b) of the field corresponding to further evolution of the spatial 
distribution depicted in Fig. 9 (T = 2800). As the region of spiral localization is decreased due to the contraction of the 
strips, the spirals are partially ordered in space (arranged around a circumference) and then disappear as a result of pair 
annihilation. 

a x b x 
Fig. 11. Snapshots of the amplitude (a) and real part (b) of the field for fl = 1.7 and a = 0. The spirals fill the entire 
region (300 x 300 square) including the neighborhood of the core of the strip (cf. Fig. 9). 

finally, they all annihilate in pairs. The shapshot of  the field for other values of  the parameters 
(a = 0 and p = 1.7) is shown in Fig. 11. The radius of  the circular strip in this case is slowly 
decreasing with time but the region of  spiral localization inside the strip is much larger than in 
the analogous situation depicted in Fig. 9. It should be noted that, as was verified in numerical 
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experiment, the solutions (38) retain their circular structure throughout their lifetime down to the 
strip width r0 ,,~ d. 

6. Conclusion 

When speaking about spatio-temporal patterns in extended systems researchers usually analyse 
three groups of  problems (see, for example, [49-51]):  (1) the patterns ordered in space and 
time (e.g., living or frozen crystals or quasicrystals, travelling or standing waves); (2) irregular in 
space but time-independent patterns (frozen disorder); and (3) the patterns irregular both in space 
and time (spatio-temporal chaos). The results presented in this paper show that extended systems 
may also demonstrate a different and slightly unexpected behavior that is chaotic in space and 
periodicaUy varying in time. Stable existence of  such a disorder is a result of  the synchronization 
phenomenon. The characteristics of  the "periodically oscillating disorder" (generalized dimensions 
or densities of  dimensions, the Kolmogorov entropy, etc.) are still to be investigated. We believe 
that one of  the most important problems to be studied is the transition from the time-periodic 
disorder to spatio-temporal chaos. Preliminary computer experiments indicate that this transition 
occurs inhomogeneously in space demonstrating a specific form of intermittency. 

In conclusion we would like to emphasize that the results presented above were obtained under 
the supposition that the strip solutions do not decay in the course of  development of  instabilities. 
The hole solutions are known [ 10] to be neutrally stable in a one-dimensional CGLE. Moreover, 
they may become stable if an additional nonlinearity, for example, "~l a 14 a is taken into account 
in the CGLE. Such nonlinearity may be induced, in particular, by the numerical scheme used in 
computer experiment. In the formulation of  the problem considered here, the situation may be even 
more favourable for strip stability. It is highly probable that the strips will additionally stabilize 
one another due to periodic boundary conditions. 

We would like to add that the problem of  strip stability is essential for understanding the 
mechanisms responsible for the existence of  different types of  defect mediated turbulence and needs 
further investigation. 
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