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The stability of one-dimensional dark strips, i.e. Nozaki-Bekki type solutions, relative to small and finite perturbations in a 2D
complex Ginzburg-Landau equation is investigated analytically and numerically. It is shown that‘in a linear approximation in
the region — oo <x < oo, 0Ky <L, Nozaki-Bekki strip (NBS) solutions are stable in a definite range of parameters. The regime of
coexistence of NBS and chaotically walking spirals — bounded defect mediated turbulence - is found. In this regime the time
averaged defect density in a rectangle bounded by parallel NBS solutions depends only on the value of supercriticality. Such a
turbulent regime transforms, in a certain region of parameters, to a regime of spatio-temporal synchronization when the spirals
are arranged periodically. The phenomenon of spiral field screening by a NBS field is shown. This phenomenon is responsible for

spatial localization of turbulent regimes.

1. In the last few years regular and chaotic dynam-
ics of localized defects in nonequilibrium media have
been actively investigated in the literature (see, e.g.,
refs. [1-3]). One of the most consistent models for
such an analysis is a CGLE describing oscillatory
media near the Hopf bifurcation,

d.a=a+ (1+ia)V3a— (1+if)|a|%a, (1)

where a is a complex value describing the phase and
the amplitude of the field envelope (order parame-
ter) while a and § are real parameters [4,5]. Most
results have been obtained by computer analysis [1]
but there are also analytical solutions, including an
exact solution of the 1D CGLE in the form of a “dark
soliton” or hole solution. This solution was first ob-
tained by Nozaki and Bekki [6] *'. The explicit form
of the hole solution is given by

a;=A(x,t) exp[ —iwt+i6(x)], 2)

where A(x, t)=,/1 —Q? tanh(kx), the phase 8 ful-
fills the equation

#1 An analogous solution for a conservative system, a nonlinear
Schrédinger equation, was obtained by Hasegawa and Tap-
pertin 1973 [7].
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o — —Qtanh (k) (3)
where w=(a—p)Q*+p is the frequency, and
Q= (2k?—1)/3ka is the wavenumber. The param-
eter 1/k describes the width of the hole and k is found
from the equation

[4(B—a)+18a(l+a?)]k?
—[4(B—a)+%a(l+ap)1k*+ (B—a)=0. (4)

Solution (2) tends asymptotically, as x— * oo, to a
plane wave solution with wavenumber F Q. The am-
plitude of the hole solution turns to zero when x=0.
The dynamics of the one-dimensional defects (2)
considered here has been studied in ample detail (see,
e.g., refs. [8-12]).

An isolated spiral solution,

a,=F(r) exp[ —iwt—imp+if(r)], (5)

is most frequently encountered in analyses of 2D
CGLE. Here (r, p) are polar coordinates, m is a top-
ological charge (only solutions with m= *1 are sta-
ble [13]), w=(a—B)Q*+ B is the frequency of ro-
tation, and Q is an asymptotic wavenumber that
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depends on « and $ [13]. The functions F(r) and
6(r) may be represented for r>1 in asymptotic
forms,

1+a?
F(r)=(1—Q2)1/2— 2(1_EQz)61¥/2)(Q_ﬂ) r—1
+0(r-2), (6)
81 =0r+ 228 10y ro(r) (7)
T 2Aa=p) '

Much attention has also been given to the investi-
gation of the stability and interaction of spirals [ 14—
16].

In spite of the substantial difference between the
holes (2) and the spirals (5), their behaviors as point
defects in oscillatory media have much in common
and from this point of view solution (5) is often
considered as a two-dimensional analog of (2).

In this paper we will show that solution (2) may
be directly generalized to the case of a 2D medium
and the generalized solution, i.e. the NBS, will be
stable. We will also demonstrate by means of a com-
puter experiment fascinating phenomena associated
with the interaction of the NBS patterns and spirals:
screening of the spiral field by NBS, localization of
defect mediated turbulence, as well as space and time
synchronization of spirals by a NBS field.

2. Consider a two-dimensional Ginzburg-Landau
equation in the region Q={—-oco<x<oo, 0y L}.
Periodic boundary conditions are chosen along the
spatial coordinate y. Then it is apparent that the No-
zaki~Bekki hole solution (2) of a one-dimensional
CGLE will also be a solution of a two-dimensional
equation uniform along the y-coordinate. Thus, in
what follows we will be interested in the solution of
eq. (1) in the 2D case in form (2) (NBS solution).

First of all we will show that solution (2) is lin-
early stable with respect two-dimensional perturba-
tions of the field. The evolution of a small pertur-
bation d(x, y, t) of amplitude A (x, t) of the solution
a;(x, t) toeq. (1) is described by a linear equation,

d,d=A(d, a* x)+ (1+ia)d2a, (8)

where
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A(d, a*, x)={(1+iw)
+(1+ia)[02+2i0,00, — (9,0)>+1026]
—2(1+ip) |4|%}a— (1+ip)A2a~ . (9)

By separating in eq. (8) the real and the imaginary
parts (d=u-+iv) we obtain the following system,

a,(”)=(/T+S)(”), S=a§(1 _“>, (10)
v v a 1

where A is a linear operator that depends only on the
spatial coordinate x.
We will seek solutions of (10) in the form

w6y 0\ & (Unx D)
(v(x, 7, z))" "=Z—oo<Vn(X, [)>Wn(y) , (11)

where W,(») is the eigenfunction of operator 92 in

the region ye [0, L] corresponding to the eigenvalue
p,. For example, W,(y)=exp(ik,y), k,=2nrn/L,
p.= —k?2 for periodic boundary conditions. For the
amplitudes U,(x, ¢) and V,(x, t) we have the fol-
lowing equation,

U, ~{U, I —a\(U,
()2 )enle W) oo

It should be noted that this region of the hole sta-
bility (2) within the CGLE in a one-dimensional case
contains an interval fe (B, 5,) for =0 (see refs.
{9,10]). At the same time, it is clear from (12) that
for a=0 the second term in the right-hand side of
eq. (12) shifts the spectrum of the operator A,
o(A), along the real axis to the left (p,=—k2<0)
and, consequently, a(A+S) belongs to the left half-
plane, given that g(A) lies to the left of the real axis.
This statement is also valid for sufficiently small val-
ues of « by virtue of the continuous dependence of
the operator spectrum in the right-hand side of (12)
on the parameter a.

Thus, we can contend that the NBS solution is sta-
ble relative to 2D perturbations in a certain region
of the («, B) plane. The problem of stability of the
NBS solution of the CGLE in a 2D case for suffi-
ciently small values of the parameter a reduces to
the problem of stability of solution (2) of the CGLE
in a 1D case. The latter problem was broadly dis-
cussed in the literature. We can refer the reader, for
instance, to the results of refs. {8-10], where the sta-
bility region of the hole solution for the 1D CGLE
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was constructed on the («, 8) plane.

3. Numerical experiments have demonstrated the
stability of the NBS in a two-dimensional medium
relative to finite perturbations. We employed for the
integration of eq. (1) a pseudo-spectral method [17]
based on FFT with periodic boundary conditions.
The region of integration had the size 150150, the
number of FFT harmonics was taken to be 256 X 256
or 512512, and the integration step was approxi-
mately 0.1.

The most important, and to a certain extent un-
expected, result is the following: nonlocalized NBS
are not destroyed by 2D patterns of finite amplitude
and may coexist, in particular, with spirals for rather
long times 7> 104, their mutual dynamics depend-
ing significantly on the choice of the parameters «
and 8.

The level lines for the amplitude and phase of the
field snapshot at =2 and a=0.2 are presented in
fig. 1. In the presence of NBS, the preset “spot” con-
taining spirals chaotically arranged in space evolves
rather fast into a sequence of spirals arranged along
one line at almost equal distances from one another.
Further, the topology of this established field distri-
bution remains unchanged throughout the integra-
tion interval T~ 10%

Figure 2 shows the field distribution that contains
only the NBS solution and is stable at the same val-
ues of the parameters =2 and a=0.2. The longi-
tudinal structure of the field is given in fig. 3 for a
certain fixed value of y=const. It is typical for the
solution of a 1D Ginzburg-Landau equation (see,
e.g., ref. [8]). The holes and the shocks separating
them are well pronounced in the picture. Thus, in
the case of interest not only individual nonlocalized
solutions but also the field as a whole, including
shocks, have a structure uniform along the spatial
coordinate y.

For other values of the parameters, the spirals are
never regularly arranged in the presence of NBS. The
snapshot of the field shown in fig. 4 is for =2,
a=0.1 (as the starting field distribution we chose
the one given in fig. 2). The field evolves to this state
as follows. First, additional NBS are formed in the
medium, with the uniform field structure persisting
aléng y (i.e. the medium behaves as one-dimen-
sional ). Then part of the structures are destroyed (see

PHYSICS LETTERS A

9 August 1993

a)[

(b)

il
X

Fig. 1. Level lines of amiplitude (a) and phase (b) of an estab-
lished field distribution for #=2, «=0.2 and 7T=10* A regular
distribution of the spirals demonstrates the effect of spatial self-
organization under random initial conditions.

the snapshot in fig. 5) giving birth of numerous spi-
rals with topological charges of different signs. A lit-
tle later, a spatial distribution is established which
contains several nonlocalized NBS slowly drifting
along the x-axis and a family of spirals whose co-
ordinates vary chaotically in time. An analogous sit-
uation is depicted in fig. 6 where the spirals are lo-
calized only in one region between NBS (this
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X

Fig. 2. Level lines of the amplitude of an established field distri-
bution. The parameters are the same as in fig. 1 but the initial
conditions are different. A comparison of figs. 1 and 2 shows that
finite perturbations are needed for the birth of spirals.
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Fig. 3. Longitudinal structure of the field at y=0 corresponding
to the snapshot in fig. 2.

snapshot of the field was taken at other initial
conditions).

Note that if the field distribution presented in fig.
4 is taken as the initial one and the equation is in-
tegrated at f=2, a=0.2, then the systems comes
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(a)

Fig. 4. Level lines of amplitude (a) and phase (b) of an estab-
lished field distribution for =2, a=0.1 and T=10% The field
distribution presented in fig. 2 is taken as initial condition. For
these parameter values additional NBS are born in the initial me-
dium, then part of them are destroyed giving rise to defect me-
diated turbuience.

rather fast to the regular form shown in fig. 7.
Thus, depending on the values of the parameters
« and B, we can distinguish two principal regimes of
coexistence of NBS and spirals. In the first case the
spiral dynamics is completely suppressed by the field
of nonlocalized NBS and the spirals are arranged
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Fig. 5. Level lines of amplitude of a developing (7=3X 10°) field
distribution for =2, a=0.1 and initial conditions as in fig. 2. A
NBS deformed in the transverse direction is observed in the right-
hand side of the box at the moment preceding destruction.

along one line at a maximal distance from these
structures. In the second case the spirals retain their
own dynamics and move chaotically in space be-
tween the neighboring nonlocalized NBS. It is es-
sential that the NBS screen the neighboring region
from the action of spirals.

The plane of the parameters «, f containing re-
gions of different dynamics is shown in fig. 8 [18,19],
where the values of the parameters at which the phe-
nomena of interest were observed are marked.

4. One of the most remarkable consequences of the
effects observed is that a bounded turbulent region
may exist in an unbounded (along x) strip of the
nonequilibrium medium described by the CGLE.
Actually, this means that a finite-dimensional strange
attractor may exist in a system with an infinite Rey-
nolds number.

It is not clear yet how the different NBS interact
with one another and whether they may be mutually
synchronized (when the radiated waves are in
phase). The problem of the intrinsic structure of the
NBS also remains open. Numerical experiments show
that the structure of the NBS at strong transverse dis-

PHYSICS LETTERS A

9 August 1993

(a)

(b)

Fig. 6. Level lines of amplitude (a) and phase (b) of an estab-
lished field distribution for =2, a=0.1 and T=10* The distri-
bution containing a pair of NBS and a few randomly located spi-
rals is taken as initial condition. The density of spirals depends
only on the parameters (cf. fig. 4).

tortions looks like a chain of coupled, closely placed
localized field singularities of spiral pair type.
Finally, it is extremely important to clarify the role
of the boundary conditions along y and their effect
on the stability of the NBS.
It is not excluded, of course, that part of the non-
localized structures observed in the experiment will
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Fig. 7. Level lines of amplitude (a) and phase (b) of an estab-
lished field distribution for 8=2 and a=0.2. The field distribu-
tion depicted in fig. 4 is taken as initial condition. This is still
another confirmation of the phenomenon of spatial self-
organization.

disintegrate into separate spirals at very large times
(T..>10%*). However, this does not remove the ob-
served effects because the system does not contain
any characteristic times close to 7. Besides, as was
shown in ref. [21], the hole solutions moving with
a slow velocity may be stabilized in computer sim-
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Fig. 8. The plane of the parameters « and . Presented are the
Benjamin-Fair limit (dotted line, BF); the long wavelength Eck-
haus limit with Q(«, B) corresponding to 2D spirals (solid line,
EH); and the absolute stability limit for 2D spirals (solid line,
SP) [18]. Marked are the values of the parameters correspond-
ing to the regimes observed: (O ) developed defect mediated tur-
bulence, NBS are destroyed; ([0) defect mediated turbulence in
the region between stable NBS (see figs. 4, 6); (A ) spatial self-
organization of spirals in the region between stable NBS (see figs.
1, 7); () quasistationary spatial disorder of spirals, NBS are
destroyed.

ulation of the CGLE. This may occur, in particular,
due to an additional small term in (1) of the form
—e¢|a|*a generated by the numerical scheme.

We would like to add that the phenomenon of tur-
bulent localization in a bounded region was obtained
in experiments on bimodal convection with large
Prandtl numbers. The boundary between the tur-
bulent and the coherent regions was unstable but very
long-lived {20].

The authors appreciate fruitful discussions with
H. Abarbanel, 1. Aranson and A.L. Fabrikant.
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