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Spatial disorder in the large box, one-dimensional, complex Ginzburg-Landau problem is investigated quantitatively. The 
transition from phase to amplitude turbulence is studied in detail. This transition is described by the dimension of the space 
series, as, that estimates the number of normal (independent) medium perturbations forming the chaotic space series. It is found 
that at a critical point, d, undergoes a jump whose value is universal, i.e. does not depend on the dimension of the system. Thus 
the number of perturbations in the medium grows anomalously near the transition point. This behavior is typical for critical 
phenomena. 

1. The generalized (or complex) Ginzburg-  
Landau equation (CGLE)  

O ~ l O t = ~ +  (it~-p)til  til 2+ ( ix+  v)At i  (1)  

describes the wave dynamics of  many different phys- 
ical situations (e.g., shear hydrodynamic flows [ 1 ], 
chemical reactions in media with diffusion [ 2 ], water 
[ 3 ] and plasma [ 4 ] waves, etc.). Its universality has 
a very simple explanation. This equation can be ob- 
tained, independent of  the physical origin of  the me- 
dium or field, as a result of  the transition to slow co- 
ordinates and time in all cases o f  a complex 
amplitude of  quasi-monochromatic  wave perturba- 
tions proportional to e x p ( -  iogt+ikx).  It provides 
the correct asymptotic behavior when the instability 
threshold is slightly exceeded in a narrow spectral 
interval. 

The CGLE model is a convenient tool for the in- 
vestigation o f  basic phenomena in the nonlinear 
dynamics of  nonequilibrium media. The birth and 
subsequent evolution o f  spatio-temporal chaos (tur- 
bulence), both in the evolution o f  a regular initial 
field distribution and as a result o f  parameter vari- 
ation, is one of  the principal problems in this field 
[5].  

Numerous computer  and analytical investigations 
have shown that (depending on the parameter ratio) 

both weak turbulence, which is characterized only by 
irregular phase pulsations, and a regime of  strong 
turbulence may be established in a two-dimensional 
CGLE system. Localized long-lived structures (spi- 
ral vortices) are typical for the regime of  strong tur- 
bulence. The motion and interaction o f  these struc- 
tures determine the properties of  the two-dimensional 
turbulence o f  the wave field envelope [ 5-11 ]. Two- 
dimensional effects in a CGLE are extremely diverse 
and attractive. However, even in a one-dimensional 
model the spatio-temporal behavior o f  the complex 
amplitude has a great variety o f  nontrivial effects. 
Within a one-dimensional model there also exist well- 
pronounced localized structures whose interaction 
may lead to different dynamical and turbulent re- 
gimes. The investigation o f  one-dimensional systems 
is undoubtedly much simpler than that o f  two-di- 
mensional systems. But even in one dimension much 
is yet to be understood. In particular, there are no 
answers to questions such as: What happens in the 
phase space o f  the system when the regime of  phase 
turbulence is replaced by the regime of  strong tur- 
bulence? What are the governing parameters o f  this 
transition and how is it to be described? Our paper 
is concerned with these problems. Apparently, the 
information on the dynamics o f  one-dimensional 
structures may be useful for the analysis o f  the prop- 
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erties of  stochastic self-modulation in two- and three- 
dimensional systems. 

The architecture of  the remainder of  this paper is 
as follows. Section 2 presents an analysis of  the pe- 
culiarities of  localized CGLE solutions in the form 
of  kinks or "holes". These structures are useful in the 
construction of  models for strong turbulence. In sec- 
tion 3 we propose to use the fractal dimension of  the 
space series as a description of  the transformation 
from various spatio-temporal regimes within CGLE. 
We also use it to investigate the properties of  the 
"phase turbulence - strong turbulence" transition. 
Finally, the relation between the fractal dimension 
of  the time series on the one hand, and the space se- 
ries on the other is considered in section 4. 

2. The one-dimensional system 

Oa/Ot=Ra-alal2 +O2a/Ox 2 

+ i ~  Oea/Ox2 +iflala] 2 (2) 

with the periodic boundary conditions 

a ( x +  2To, t )=a(x ,  t) (3) 

is obtained from eq. ( 1 ), for solutions with a spatial 
period L/2~, by substituting 

R=TL2/t~, f l=~/p,  

o~=tc/v, a=~tL(p/v) '/2 (4) 

and using new dimensionless time and space coor- 
dinates: t =  toldV/L 2 and X= XoJL.  

Note that the growth rate, R, also determines the 
space scale of  modulat ion structures, l. Linear sta- 
bility is compensated by nonlinear dissipation and 
diffusion, i.e., 

R ~  [al2~1-2= ]a -102a/Ox 2 ] . (5) 

With increasing growth rate, the characteristic am- 
plitude of  the appearing structures grows and their 
characteristic scale, l, diminishes. 

Detailed analytical analysis of  the behavior of  the 
field a(x, t) is possible only in limiting cases: in a 
conservative medium without diffusion (~, fl-, oo ) ~ 
or in dissipative media without dispersion (oe, fl-. 0 ). 

~' In this case from (2) we have a nonlinear Schr6dinger equa- 
tion (NSE) where the spatial structures are envelope solitons 
whose amplitude A and velocity V may slowly vary under the 
action of weak amplification or dispersion [4-12 ]. 

When a = fl= 0, system (2) transforms into a non- 
linear diffusion equation that can be written in a gra- 
dient form: 

Oa 6F 
- ( 6 )  

Ot 8a* ' 

where 

F = -  f [Rlal2-½lal4-(Oa/Ox)  2] dx 

is a Lyapunov functional. Since the functional, F(a), 
may only decrease along the trajectory (dF/dt= - 
f I Oa/Otl 2 dx<~ 0), the phase space of  the dynamical 
system (2),  (3) may contain only static attractors, 
i.e. equilibrium states. Consequently, the spatial dis- 
tribution of  the fields corresponding to these attrac- 
tors may be only regular and is described by the fol- 
lowing equation for a nonlinear complex oscillator: 
d2a/dy2=a( ]a[2-R ). 

In particular a stationary kink, 

a=R th ( x /x /2 )  , (7) 

that corresponds to the boundaries between domains 
(i.e. the regions with a homogeneous complex am- 
plitude whose phases differ by 7t) are o f  special in- 
terest. The amplitude profile in this solution con- 
tains a gap - a "hole" [13].  Such "hole" solutions 
persist for complex coefficients in the Ginzburg-  
Landau equation [14].  It is significant that one- 
dimensional structures ("holes")  behave like the co- 
res of  two-dimensional structures (spirals). 

The phenomenology of  spatio-temporal chaos 
within a CGLE has been studied in ample detail. It 
has been found that if the parameter p =  x / ~ >  1 is 
not too high, then the spatially homogeneous distri- 
bution of  the amplitude becomes unstable, and a re- 
gime that is referred to as "phase turbulence" is es- 
tablished [ 1,2]. Slow random walks o f  the phase, ~0, 
o f  the wave field, a=A exp(i~0), are typical for this 
regime, as long as the fluctuations of  the amplitude, 
A, are small and "follow" the phase fluctuations. As 
the parameter p increases, the behavior of  turbu- 
lence changes. Regions of  abrupt phase variations 
appear and, respectively, there occur "holes" in the 
amplitude profile. It was shown in ref. [ 14 ] that as 
the parameter p increases, the "holes" grow in num- 
ber, move (see ref. [ 15 ] ), oscillate and interact with 
one another. The resulting developed "ampli tude" 
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turbulence makes a quite complicated picture. 
It is important to understand the processes that 

occur in the phase space of the CGLE and to de-. 
scribe them in terms of nonlinear dynamics. It is also 
essential to find whether the characteristics of  the 
"phase-ampli tude" turbulence transition are uni- 
versal. For the solution of this problem we employ 
a new approach to the analysis of  the phase-to- 
amplitude turbulent transition. This approach is 
based on the calculation of the dimension of spatial 
chaos and on the analysis of  the parameter depen- 
dence of the variation of this quantity. 

3. The correlation dimension of the space series, 
ds, was first introduced in ref. [ 16 ]. When calculat- 
ing ds we assume that the space series at a certain 
moment of  time, t, may be considered to be gener- 
ated by a finite-dimensional translational dynamical 
system, Gx. 

In a one-dimensional medium, ds is determined 
similarly to the correlation dimension of the time se- 
ries, d~, [ 17 ] employing the correlation integral. As- 
sume that the dynamical system, Gx, in an m- 
dimensional phase space describes the trajectory 
y ( x ) = { a ( x ) ,  a ( x + ~ ) ,  a ( x + 2 ~ ) ,  ..., a[x+ 
( m - 1 ) ~ ] } .  We will calculate the dimension using 
the correlation integral in a standard form: 

Rm(e) = ( M - m )  -2 ~ Y'. H ( I l Y , - Y j l t - e )  
i j 

= (M~) IM,  (8) 

where H(e )  is the Heaviside function, y~ is a point 
in the m-dimensional phase space, M denotes the to- 
tal number of points in the series, and MS, the num- 
ber of  points in the e-neighborhood of the ith point. 
Because Rm(e) ~ eds ,  the correlation dimension is 
determined as the ratio log[Rm(e)]/log(e) for small 
enough e. Note that correct calculation of the di- 
mension, d~, needs sufficiently long space series and 
a proper choice of  ~ (see appendix). Definition ( 8 ) 
is analogous to the definition of the temporal cor- 
relation function as a time-averaged number of 
"fragments" of the series, with the distance between 
the "fragments" being smaller than e. In a similar 
fashion and in analogy with the local dimension that 
is determined by averaging over time, the value of 
the correlation dimension of the space series, ds, in 
m-dimensional enclosure space, is defined as the ra- 

tio l og [R" (e )  ]/ log(~) for sufficiently small e. 
The length of the space series is determined by the 

actual number of  spatial structures. In the case of  the 
boundary value problem (2), (3),  the value R >> 1 
corresponds to a long space series. The dimensional 
characteristics of the turbulent regime that has been 
established as t~oo,  in this case, depend neither on 
the boundary conditions nor on the length of the 
system. 

4. We shall now investigate the transformations of  
the attractor that corresponds to the regime of es- 
tablished spatio-temporal chaos in a long system. To 
this end we will measure the dimensions ds (for the 
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Fig. 1. Dimension of the space series for R =  104; (a) against p 
f o r s =  1.15; (b)  against s for p=3 .0 .  
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Fig. 2. Space amplitude variations for R= 104. c~= 1.05, fl= 1.3~ 

space series)  and  dt (for the t ime  series) .  The  de- 
pendenc ies  o f  fractal d i m e n s i o n s  on the product  
P = x / ~  are given in fig. 1 a for fixed s = x / f l / a  ~2. Of  
pr inc ipa l  i m p o r t a n c e  here are two p h e n o m e n a :  the 
j u m p  in d i m e n s i o n  when  p = p "  an d  the hysteresis in 
the paramete r  region p c  (/~", p" ). To under s t and  their  
origin we shall consider  the var ia t ion  of  d~ and  dt with 
increas ing p. 

For  small  p the d i m e n s i o n  is equal  to zero, which 
cor responds  to the regime of  spat ial ly homogeneous  
e'Pt-oscillations. W h e n  p>p~,  the d i m e n s i o n  grows 

up to uni ty ,  which cor responds  to the onset  o f  a spa- 
tially per iodic  regime, while for P=P2 a double  fre- 
quency  (2 -D)  regime is establ ished.  Fu r the r  evolu-  
t ion of  the system is related to the appearance  of  beats 
against  the backg round  of  quas i -per iod ic  osci l la t ions  
(see fig. 2)  and  to the t rans i t ion ,  when  p > p ' ,  to a 
chaot ic  regime. Note  that  for large values  of  the pa- 
ramete r  R, the region on  the p lane  o f  the pa ramete r s  
(c~, fl) that  cor responds  to per iodic  and  quasi-per i -  
odic osci l la t ions  is very nar row a n d  is no t  depic ted  
in fig. 1 ~3 

A deve loped  t u rbu l en t  regime that  sets in when 

,2 The combinations of the parameters a and fl are chosen such 
as to move along the normal to the boundary of the regions of 
phase and amplitude turbulence (see below ). 

~3 The large-scale structures whose size is comparable with a res- 
onator length (a short system, small R) was studied earlier 
[18,19]. 
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Fig. 3. Typical "snapshots" in turbulent regimes: (a) phase tur- 
bulence for R= 104, a =  1.0, fl= 1.3; (b) amplitude turbulence 
for R=I04, o~=1.1, fl=1.44; (c) amplitude turbulence for 
R= 104 , a =  12.0, fl=0.75. 
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p>~p' is phase turbulence: the amplitude has a value 
close to l a I=  ~ (fig. 3a) and its fluctuations adi- 
abatically "follow" relatively smooth random walks 
of the phase. While moving over the parameter plane 
deep into the region of phase turbulence (with p in- 
creasing for s = const) up to p =p" ,  the stochastic set 
corresponding to phase turbulence gets more and 
more complicated; the dimension of the space series 
grows monotonically within the interval 3 <ds~< 5. 

Past the critical value of the parameter p=p", we 
observe a qualitatively new behavior: the dimension 
of the space series increases abruptly up to ds >/6. This 
is accompanied with strong oscillations in the spatial 
amplitude distribution - amplitude turbulence is 
established. 

The spatial amplitude distribution in this regime 
may have different characteristic forms. When fl>> 1, 
the turbulence typically has narrow impulses 
("holes") on the background of weak oscillations 
near the level lal = x / ~  (fig. 3b). With increasing p, 
such holes grow in number past the critical point 
p=p', which, evidently, leads to a further growth in 
the dimension of the space series. When p~< 1, the 
number of "holes" is sufficiently large immediately 
past the threshold where amplitude modulation is 
established, consequently, the spatial picture is vis- 
ualized as strong oscillations in the interval from zero 
to a certain maximum (fig. 3c). 

In a reverse motion over the parameter plane hys- 
teresis is observed: the amplitude turbulence is re- 
tained and does not change to the phase turbulence 
even when p<p'. Stepwise decrease of dimension 
occurs when p=p'. Thus, the initial conditions de- 
termine the regime - developed amplitude turbu- 
lence or phase turbulence - to be established in the 
region (/~", p" ). 

A possible mechanism responsible for the phe- 
nomenon described above is as follows. The transi- 
t ion of the motion of the translational dynamical 
system, Gx, from one stochastic set in the phase space 
to another corresponds to a sharp change in the value 
of the space series dimension. The established tur- 
bulent regime corresponds to a strange attractor in 
the phase space. The phase transition occurs at the 
instant the separatrix manifold of the saddle peri- 
odic motion bounding the region of attraction of a 
low-dimensional ("phase") attractor merges with the 
latter which, as a result, ceases to be an attractor: now 
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Fig. 4. (or, p)-plane for R= 10 4 with regions of different dynam- 
ics: (1) stable monochromatic homogeneous oscillations with 
amplitude lal =x/R; (2)phase turbulence; (3)amplitude tur- 
bulence; (4) region of hysteresis. 

nearly all the trajectories tend to each other, "lam- 
inar" attractor. Both strange attractors - the phase 
and the amplitude ones - coexist in the hysteresis 
region in the phase space. 

Partitioning of the parameter space (or, p) into re- 
gions of existence and stability of different spatially 
disordered regimes is presented in fig. 4 ~4. In region 
1 the homogeneous amplitude field is stable. Phase 
turbulence appears from small initial disturbances in 
region 2, and amplitude turbulence exists in region 
3. The broken curve bounds the region of hysteresis 
(region 4 in fig. 4), where the solution depends on 
initial conditions. Note that this region stretches to 
the negative halfplane of the parameter ot < 0, where 
the space series (static lattices of  randomly located 
holes) are established. There is no hysteresis in re- 
gion 2 (outside region 4). The transition from phase 
to amplitude turbulence occurs here not by a jump 
but gradually in a finite interval: the intensity of  
phase fluctuations increases near the boundary of re- 
gion 2. The rapid growth of the dimension is ob- 
served in this interval (fig. Ib) ,  in connection with 
the appearance of holes. 

~4 A similar partitioning of parameter space into regions of dif-" 
ferent behavior of the correlation function (which is deter- 
mined by the presence or absence of"holes" ) was performed 
in ref. [20]. 
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5. Of principal importance is the problem of the 
relationship between different quantities describing 
turbulence: the number of structures, N, the dimen- 
sion of the space series, ds, and the dimension of the 
time series, dr. Our analysis indicates that for the one- 
dimensional CGLE model the average number of 
pulsed structures, N, grows according to a linear law 
with increasing dimension (fig. 5) in the region of 
amplitude turbulence as the parameter p is in- 
creased. The same linear growth is observed for the 
dispersion of the number of structures. 

The dimensions ds and dr, for the general case, may 
be related arbitrarily. For instance, for a static dis- 
ordered field distribution, d,= 0 and ds> 2. On the 
contrary, for a regular spatial field distribution with 
chaotic temporal dynamics, d~ may be rather large, 
while ds is small. In a large box one-dimensional 
complex Ginzburg-Landau problem dt grows with 
increasing effective length of the system (i.e. with 
increasing number of structures) and is much higher 
than the spatial dimension ds. Within CGLE models 
that are described by specific dispersion laws there 
evidently exists a certain relation between ds and d~ 
per unit length in the regime of established 
turbulence. 

We would like to note that the jump of the di- 
mension d~ in the motion over the parameter plane 
across the boundary of region 3 may occur a little 

Fig. 5. Number of"holes" ,  N, in amplitude turbulence against p 
for R = 104, s = 1.15. Vertical lines indicate the mean deviation 
of N. 

later than that of d,. This effect has a simple expla- 
nation. In the transition of the parameter across the 
critical value the intermittence of amplitude turbu- 
lence occurs: "holes" in the amplitude profile fluc- 
tuate, i.e. they disappear and appear at different mo- 
ments of time. Therefore, if the space series 
corresponds to the moment, t, when there are no 
"holes", its dimension may be smaller that at other 
moments of time. 

The authors are grateful to H. Abarbanel, I.S. 
Aranson, R. Brown and A.V. Gaponov-Grekhov for 
fruitfol discussions and useful comments. 

Appendix 

The boundary value problem (2), (3) was solved 
numerically by the Fourier method. The integration 
algorithm was an apparent generalization of the 
method of operator exponents described in ref. [21 ]. 
Within this method exact solutions to a linear prob- 
lem are employed to construct an approximate non- 
linear solution, which shortens the computation time 
significantly as compared to standard grid algo- 
rithms. Spatial resolution was determined by the 
number of Fourier harmonics n. This number lies in 
the interval 512 < n < 8192 and depends on the com- 
plexity of the regime and on the needed accuracy. 
Small sinusoidal amplitude perturbations or the spa- 
tial amplitude distributions that are established in a 
definite parameter region were taken as initial 
conditions. 

The dimension of the space series in the solutions 
of interest can be estimated only if we have extended 
turbulent fields. However, insufficient computer 
memory and speed impede the calculations. Even for 
n >/4096 harmonics, an extremely long time is needed 
for the computation of solutions. So as to avoid this 
difficulty, especially in the case of very long space 
series, the following procedure was used. 

The phase trajectory of the system in the estab- 
lished regime lies on an attractor and has stationary 
statistical properties. Consequently, we can use, for 
the determination of the dimension, space series 
taken at different moments of time. We match these 
series into one. To decrease the inhomogeneities at 
the matching points, we choose the series where the 
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sequences o f  k neighboring points coincide and match 
them in the region o f  these sequences. The inhom- 
ogeneity in the region of  matching can be neglected 
and the jo in t  space series can be considered to be 
generated by a t ransla t ional  dynamica l  system, i f  the 
number  k is larger than the d imens ion  d= on the sto- 
chastic set. In this fashion we can obta in  arbi t rar i ly  
long space series and  de te rmine  the value o f  the di- 
mension that  is, actually, averaged over  an ensemble 
of  systems having different  init ial  condit ions.  

The space resolution, Ax, in our numerical  solu- 
tions was rather high to reveal the characteristic shape 
of  the structures having the size 1: l/Ax>~ 10. For  the 
calculat ion o f  the correlat ion dynamica l  d imension,  
the stochastic set of  a mul t id imens iona l  dynamical  
system was reconstructed in a pseudo-phase space 
from the space series. A fixed-mass algori thm [22] 
and the Grassberger -Procacc ia  procedure  [23 ] was 
employed to calculate the value ds. 

Proper  "de lay"  of  the space series is needed for the 
construct ion of  the embedding  space. I f  the "de lay"  
step, ~, is too small,  the ensemble taken for the cal- 
culat ion o f  the correlat ion d imens ion  will represent  
only the local structure of  the solut ion (a section o f  
a curve) .  The measured  d imens ion  will, conse- 
quently, tend to unity. If, on the other  hand, the "de-  
lay" step is too large, the measured  d imension  will 
tend to the d imens ion  o f  the embedding  space since 
the points  of  the space series are completely 
uncorrelated.  

A "de lay"  step ~ comparable  with the correlat ion 
length provides  a correct  calculat ion of  the d imen-  
sion. A typical scale (for example,  posit ion o f  the first 
m i n i m u m )  o f  the mutual  informat ion function gives 
the best choice for ~ [24] .  The mot iva t ion  for this 
is that  the informat ion  in two successive delay co- 
ordinates  should be as independent  as possible, with- 
out  making the delay too large. This  cr i ter ion yields 
c~= (3-5)•. So as to verify this es t imate and to de- 
te rmine  the "de lay"  step more  accurately we calcu- 
lated the dependence  o f  the d imens ion  ds on the "de-  
lay" step ~. The function ds(~), as was to be expected, 
grows with increasing ~ (see fig. 6) .  The curve in the 
figure contains  a fiat section (a "p l a t eau" )  which is 
the interval  within which the "de lay"  step should be 
chosen. By choosing the value o f  ~ within this section 
we obta in  a correct value o f  the dimension.  

Besides, we calculated the dependence  o f  d~ on the 
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Fig. 6. The value of the dimension, ds, calculated for various space 
delays ~ for R= 104, ct= 1.0, p= 1.3. The number of harmonics 
used in the Fourier method is n = 2048. 

length of  the space series N. The d imension  ds 
asymptot ical ly  tends to a constant  that  corresponds 
to the true d imension  when N>~ 2000. 
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