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Computer simulations of stimulus dependent state switching in basic circuits of bursting neurons
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We investigate the ability of oscillating neural circuits to switch between different states of oscillation in two
basic neural circuits. We model two quite distinct small neural circuits. The first circuit is based on invertebrate
central pattern generator~CPG! studies@A. I. Selverston and M. Moulins,The Crustacean Stomatogastric
System~Springer-Verlag, Berlin, 1987!# and is composed of two neurons coupled via both gap junction and
inhibitory synapses. The second consists of coupled pairs of interconnected thalamocortical relay and thalamic
reticular neurons with both inhibitory and excitatory synaptic coupling. The latter is an elementary unit of the
thalamic networks passing sensory information to the cerebral cortex@M. Steriade, D. A. McCormick, and T.
J. Sejnowski, Science262, 679 ~1993!#. Both circuits have contradictory coupling between symmetric parts.
The thalamocortical model has excitatory and inhibitory connections and the CPG has reciprocal inhibitory and
electrical coupling. We describe the dynamics of the individual neurons in these circuits by conductance based
ordinary differential equations of Hodgkin-Huxley type@J. Physiol.~London! 117, 500 ~1952!#. Both model
circuits exhibit bistability and hysteresis in a wide region of coupling strengths. The two main modes of
behavior are in-phase and out-of-phase oscillations of the symmetric parts of the network. We investigate the
response of these circuits, while they are operating in bistable regimes, to externally imposed excitatory spike
trains with varying interspike timing and small amplitude pulses. These are meant to represent spike trains
received by the basic circuits from sensory neurons. Circuits operating in a bistable region are sensitive to the
frequency of these excitatory inputs. Frequency variations lead to changes from in-phase to out-of-phase
coordination or vice versa. The signaling information contained in a spike train driving the network can place
the circuit into one or another state depending on the interspike interval and this happens within a few spikes.
These states are maintained by the basic circuit after the input signal is ended. When a new signal of the correct
frequency enters the circuit, it can be switched to another state with the same ease.@S1063-651X~98!13011-8#

PACS number~s!: 87.10.1e, 87.22.As
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I. INTRODUCTION

Many experiments indicate that spiking-bursting neuro
have special importance for rhythmic motor control@1,3,4#
and oscillatory brain functions@5,6#. In neural assemblies th
collective dynamics of such neurons may generate a se
characteristic phase differences or time lags that repre
distinct states of the oscillatory behavior. Oscillatory circu
with quite different architectures may show similar dynam
cal features and we inquire here into a potential utilization
the similarities of such diverse neural circuits. We inves
gate two basic neural circuits, which are presented in Fig
Figure 1~a! shows a neural couple from the lobster stoma
gastric ganglion~STG! @1# and Fig. 1~b! a typical vertebrate
thalamocortical circuit@2#. Although the functional role
played by these circuits is very different, the presence
antagonistic coupling between different parts of the circ
makes them exhibit common dynamical features. In the c
tral pattern generator~CPG! circuit the antagonistic coupling

*Present address: Institute for Nonlinear Science, University
California–San Diego, La Jolla, CA 92093-0402. FAX: 619-53
7664. Electronic address: hdia@hamilton.ucsd.edu
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is given by the electrical and inhibitory connections. T
electrical coupling tends to drive the two neurons in
closely in-phase synchronized oscillations, while the inhi
tory couplings lead to a tendency for out-of-phase osci
tions. In the thalamocortical circuit the two sides of the a
sembly are connected by both excitatory and inhibitory lin

In this paper we inquire into the utility of such antagon
tic connections in neural circuitry. In a general way we e
pect excitatory neural connections and electrical connect
to produce in-phase bursting oscillations, while mutual
hibitory coupling tends to produce out-of-phase behavior
the coupled neurons. The exceptions to this ‘‘rule’’ are d
cussed in@7–9#. In particular, in@10# it was shown that if the
rise time of the synapse is longer than the duration of
action potential, inhibition not excitation leads to synchr
nized firing. We suggest here, following earlier work@11#,
that this antagonistic structure of neural connections can
important for organizing bistable or multistable behavior
neural circuits. We should note that a multistability may a
pear in the coupled spiking-bursting neurons connected w
a gap junction@12# or synaptic exponential coupling@10#
alone; however, the region of multistability is usual
broader in systems with contradictory coupling. Such mu
stability can facilitate the storage and encoding of inform

f
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PRE 58 6419COMPUTER SIMULATIONS OF STIMULUS DEPENDENT . . .
tion that is received by neural assemblies. We will show h
that the switching of the circuit from one state to another c
be accomplished by an incoming spike train and that whe
the switch is made depends on the frequency of the s
train. After the spike train is completed, the circuit rema
in the state where the spike impulses left it until anoth
spike train of appropriate frequency comes along to switch

We begin by analyzing the autonomous bursting activ
of these circuits using conductance based models of e
neural element embodied in Hodgkin-Huxley different
equations. A common feature of oscillations in these circu
is a broad region of bistability encountered as interneu
coupling strengths are varied. In many regions of param
space at least two stable attractors coexist in the dynam
state space@13#. One attractor is associated with in-pha
oscillations of the parts of the circuit and the other one
associated with out-of-phase oscillations. We then inject
citatory input, made up of short intervals of periodic spi
trains, into the circuit as shown in Fig. 1. We find bro
stable regions of spike train frequency where the in
switches the circuit between the two main modes of osci
tion.

FIG. 1. Basic circuits:~a! CPG circuit and~b! thalamocortical
circuit. Solid circles indicate inhibitory connections and op
circles excitatory connections. The resistor symbol denotes a
junction connection. The manner in which the external inputs w
introduced through AMPA excitatory synapses is also sho
Shown beneath each circuit is a schematic representation o
input spike trains. The input signals started at a timeT0 and were
spaced byTp . We investigated the dependence of attractor swit
ing on the spike timingTp . A sample of the responses of the bas
circuits to inputs with differentTp can be seen in Figs. 4 and 9
Also in those figures is a more realistic picture of the incom
spike trains.
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II. MODELS

We describe the behavior of an individual neuron by
system of ordinary differential equations of Hodgkin-Huxle
type @14#. Such conductance-based models of neural dyn
ics provide a realistic description for the generation of act
potential spikes as well as of the bursting behavior. The
tailed equations for the membrane potential and the o
dynamical quantities are described in the Appendix. The s
aptic couplings are represented by kinetic models consis
with the Hodgkin-Huxley formalism in modeling ionic chan
nels. Our model systems have been integrated using se
independent methods: embedded Runge-Kutta 6~5! @15#,
backward differentiation@16#, and in some cases implici
Runge-Kutta@17# methods. The results from each of the d
ferent methods of numerical integration were consistent w
each other.

A. CPG system

The autonomous dynamics of the model stomatogas
neuron is qualitatively as follows. There is a slow inwar
depolarizing currentI h that drives the membrane potential
the point where a fast calcium currentI Ca is activated. This is
the beginning of the burst. TheI Ca leads to the activation o
I Na, which depolarizes the cell and generates action po
tials or spikes. WhileI Ca is activated, the calcium concentra
tion inside the cell is raised. It produces activation of t
potassium currentI K(Ca), which determines the end of th
burst. The cycle is repeated with the reactivation ofI h . In
this circuit each neuron has intrinsic oscillations. Wh
coupled by inhibitory and electrical synapses as shown
Fig. 1~a!, the pair of STG neurons produced bursts that w
either in phase or out of phase. Over a range of the electr
coupling gele, 5 nS<gele<12 nS, more than one attracto
was present in the state space of the CPG circuit.

In Fig. 2~c! we show the time lag between the right an
left neural oscillators in this circuit as a function of the g
junction or electrical couplinggele between them. The inhibi-
tory couplings were held fixed atgsyn520 nS. This is the
value we use for all the calculations reported here. When
time lag between the neurons is zero, we have in-phase
havior. As we increasegele from zero, the oscillations are ou
of phase with a time lag about 90 ms@Fig. 2~b!#. This time
lag varies little untilgele'12 nS. At that point the time lag
drops rapidly to zero and the system oscillates in phase@Fig.
2~a!#. As we turn the value ofgele down from gele.15 nS,
the in-phase oscillations persist untilgele'5 nS and then the
system returns to out-of-phase behavior again. This dif
ence in the state of the system as we reach certain value
gele from above or from below is the hysteresis or bistabil
we noted earlier. In Fig. 2~c! we also have cases where
small amount of Gaussian noise was added to each i
conductancegi . We represented this noise by

gi~e!5gi1es~ t !,

wheres(t) is white noisê s(t)&50 and^s(t)s(t8)&5d(t
2t8). We studied two cases:e50.1 nS ande51.0 nS. One
can see that the hysteresis is quite robust against env
mental noise affecting the synaptic conductances. Indee
was a surprise to us that the smaller noise levele50.1 actu-
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6420 PRE 58MIKHAIL RABINOVICH et al.
ally expanded the region of bistability where stable in-ph
and out-of-phase oscillations both appear at the same sy
parameter values. Looking at this effect from the point
view of the neurons as a dynamical system, this sugges
shallow basin boundary between the two states at some
ues ofgele. The robustness of these phenomena means
the switching between system attractors we shall repor
shortly is a good candidate for a reliable biological mec
nism.

FIG. 2. Autonomous dynamics of the basic circuits showing
bistability that is critical to our investigations in this paper.~a!
In-phase oscillations of the CPG neurons whengele54 nS and
gsyn520 nS. ~b! Out-of-phase oscillations of the CPG neuro
whengele54 nS andgsyn520 nS. ~c! Time lag between the oscil
lations of the CPG cells as a function ofgele when gsyn520 nS.
Here ‘‘forward’’ means that the control parametergele is increased
very slowly and ‘‘backward’’ means thatgele is reduced very
slowly. We also show the effect of small amounts of Gauss
white noise added to the conductances on the bistability or hys
esis in this CPG circuit. In the calculations we took each circ
conductance to have the formg(e)5g1es(t) with s(t) Gaussian
white noise with a rms value of unity. Cases withe50.1 nS and
e51.0 nS are shown.
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B. Thalamocortical system

Thalamic relay cells exhibit two different modes of b
havior: the relay mode and burst mode. In the relay mo
corresponding to the awake state, thalamocortical~TC! cells
are depolarized above260 mV. External sensory inpu
evokes a train of action potentials transmitting sensory in
to the cortex. Hyperpolarization of thalamic relay cells du
ing sleep makes possible a deinactivation of low-thresh
Ca21 currents and leads to the burst mode. In this case
thalamus generates specific sleep-related oscillations and
lamic relay cells no longer relay sensory input to the cort
In contrast, synchronization of thalamic oscillations by sp
cific sensory signals will evoke a powerful input to the co
tex.

Sleeping thalamic oscillations are generated as a resu
synaptic interaction between thalamic relay cells and neur
of the thalamic reticular nucleus@2#. The lateral inhibitory
g-aminobutyric acid-A~GABAA! mediated connections be
tween reticular~RE! neurons form a network that plays a
important role in the generation and spreading of thalam
oscillations. TC cells receive a large GABAergic input fro
RE cells and send back an excitatorya-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid~AMPA! connection. The
simplest network taking into account the essential feature
thalamic organization and generating specific thalam
rhythms consists of pairs of coupled RE and TC cells and
shown in Fig. 1~b!.

A detailed description of the dynamics of the TC and R
cells is contained in the Appendix. Here we give a qualitat
discussion of the behavior of these cells.

The isolated TC cell shows self-sustained, slowd oscilla-
tions due to the interaction between the low-threshold C21

currentI T and the hyperpolarization-activated cation curre
I h @18,19#. Depolarization of the TC cell during burst dis
charge deactivates theI h current resulting in a hyperpolar
ization of the cell. Hyperpolarization of the membrane p
tential leads to deinactivation of the low-thresholdI T current
and activation of theI h current, which slowly depolarizes th
cell until it generates a new low-threshold spike. The RE c
has no intrinsic mechanisms for self-oscillations for the c
rents considered in the model. However, two RE ce
coupled by inhibition can oscillate as a result of an inter
tion between low-threshold Ca21 currents and GABAA in-
hibitory postsynaptic currents@20,21#.

The dynamics of the circuit seen in Fig. 1~b! arises from
the interplay of cellular and synaptic properties in the T
and RE cells. The bursts in the RE cells activate GABAA and
GABAB receptors in the TC cells and this results in th
hyperpolarization followed by deinactivation of theI T cur-
rent and low-threshold spikes~LTSs!. Burst discharges in the
TC cells evoke excitatory postsynaptic potentials~EPSPs! in
RE cells followed by the activation of theI T current. Weak
reciprocal inhibition between the RE cells produces p
longed burst discharges that activate GABAB receptors in TC
cells and synchronize them in phase as seen in Fig. 3~a!.
However, strong reciprocal inhibitory coupling between R
cells depresses burst discharges in these cells and the
cells exhibit an out-of-phase rhythm shown in Fig. 3~b!. This
is typical for spindle oscillations@22,23#. Figure 3~c! gives
the time lag between TC cells as a function of maxim
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FIG. 3. Autonomous dynamics of the basic RE-TC circuit.~a! In-phase oscillations. Both RE and TC cells oscillate synchronousl
;3 Hz. ~b! Out-of-phase oscillations. RE cells oscillate synchronously at;10 Hz while TC cells produce bursts each second cycle wit
frequency;5 Hz. ~c! Time lag between the oscillations in TC cells as a function ofgGABAA

between RE cells. ‘‘Forward’’ means that th
control parametergGABAA

is increased very slowly. ‘‘Backward’’ means thatgGABAA
is reduced very slowly.
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GABAA conductance between RE cells. We can see a la
region of bistability 44 nS<gGABAA

<110 nS where the sys
tem exhibits in-phase or out-of-phase behavior depending
the initial conditions.

III. FREQUENCY DEPENDENCE OF STATE SWITCHING

With the dynamical behavior of each circuit establishe
we now turn to the response of these basic neural assem
to stimulation by a series of depolarizing spikes of varyi
interspike interval. The external forcing associated w
these spike trains is mediated by AMPA receptors as sh
in Fig. 1.

At the synaptic junctions, neurotransmitter is released
times

tn5nTp1T0 , n51,2, . . . ,Ns ,
ge

n

,
ies

n

at

wheren is the spike number in a spike train consisting ofNs
spikes.Tp is the time between spikes. The spike train sta
at T0 . The release of this neurotransmitter initiates the sp
train by driving the fraction of open channels@O#(t) from
zero to a value determined by the simple kinematics bel
@O#(t) itself enters the description of the AMPA current a

I AMPA~ t !5gAMPA@O#~ t !$V~ t !2EAMPA%,

and this is added to the dynamical equations of each neu
directly receiving external output. In our calculations w
usedgAMPA550 nS andEAMPA50.

The simplified dynamics of@O#(t) was taken to be

d@O#~ t !

dt
5a$12@O#~ t !%@T#~ t !2b@O#~ t !,
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6422 PRE 58MIKHAIL RABINOVICH et al.
where the timing information on the spikes is in the ne
rotransmitter concentration represented by

@T#~ t !5A(
n51

Ns

u~ tmax2tn!u~ tn!.

A is the overall amplitude of neurotransmitter.A, a, b, and
tmax are constants given in the Appendix.u~ ! is the Heavi-
side function.Ns spikes initiated at timestn with spacingTp
are delivered to the circuit. We start a spike train by select
a series ofT0 and then associating that with aTp and a
number of spikes. The latter is chosen so that the spike t
lasts about 1 s. Figures 4 and 9 show examples of how
can initiate spike trains at variousT0 and have them injec
current into the AMPA connections at interspike intervals
Tp . We varyTp to investigate the dependence of the circ
response to the interpulse interval, stimulus length, and
plitude.

In each basic circuit, we explore the dependence onTp of
in-phase or out-of-phase synchronization of the parts of
circuit. We also examine the persistence of changes in
oscillations after theNs spikes have passed.

We made the external AMPA synaptic connectio
slightly unsymmetric to provide both some realism in t
coupling and to provide an easier transition from in-phase
out-of-phase oscillations. We discuss this point in more
tail below, but for the moment we set the conductances in
two AMPA couplings different by 10%. In the CPG circu
we set gAMPA550 nS in one synaptic contact andgAMPA
545 nS in the other. In the RE-TC system we setgAMPA
50.2 nS in one contact andgAMPA50.18 nS in the other.

A. CPG system

1. Precise timing of spike inputs

To indicate the range of circuit responses that result fr
the incidence of a short sequence of spikes arriving at
CPG circuit, we show in Fig. 4 a series of spike sequenc
with differing Tp and also show the result of their action o
the circuits. The circuit begins in out-of-phase oscillations
spike train ofNs56 pulses withTp5150 ms switches the
circuit to in-phase oscillations. Shortly after that a seque
of Ns515 pulses withTp571 ms arrives and switches th
circuit back to out-of-phase oscillations. While in that ou
of-phase state a sequence ofNs55 pulses with Tp
5180 ms moves the circuit back to in-phase oscillatio
Finally a sequence ofNs58 pulses withTp5125 ms returns
the system to out-of-phase oscillations. Each spike sequ
lasts order of 1 s and the switching is typically done by th
time two to five spikes have been received.

We note three essential features of these calculations:~i!
Inputs of different frequency 1/Tp can switch the behavio
from in phase to out of phase and vice versa;~ii ! the circuit
remains in the state of oscillation selected by the spike t
with timing Tp after the termination of the input; and~iii ! the
switching can be quite rapid, so the information in the sp
train is quickly transferred by the bistable circuit.

The first train of spike inputs withTp5150 ms shown in
Fig. 4 switches the bursts from out-of-phase behavior to
phase oscillation. At the onset of the spike train one of
neurons is not affected by the excitatory input because it i
-
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a state whereI K(Ca) is active or the calcium current is a
ready activated. Therefore, no significant change occur
this neuron. On the other hand, the second neuron is
state where only the inwardI h current is active. So any ex
citatory input depolarizes the cell to a point whereI Ca is
activated and a burst begins. This allows the second neu
to ‘‘catch up’’ with the other neuron. This phenomenon on
happens for a range ofTp . A second example of this is
shown in the bottom panel of Fig. 4 when the neural circ
receives a spike train withTp5180 ms.

In-phase bursting can be switched to out-of-phase bu
ing by stimulating the circuit at differentTp . This is seen in
the parts of Fig. 4 whereTp is 71 ms and then where it is 12
ms and by introducing nonsymmetric external excitatory
put to both neurons. The maximal excitatory conductivity
one of the neurons is 50 nS and 45 nS to the other one.
eachTp one of the neurons gets activated a little bit earl
than the other one, generating a small delay between th
This delay is sufficient to break the symmetry and trans
the dynamics to out-of-phase oscillations.

In Fig. 5 we look at this switching capability in a differen
way. We set the electric conductancegele56 nS. This is in
the region of bistable oscillations. We plot the ratio of o
served time lag between the oscillations of the CPG neur
to Tp as a function ofTp . Figure 5~a! shows this for circuits
that are out-of-phase when the spike train arrives and
5~b! shows this for circuits that are in phase when the sp
train arrives. When the system is in phase as the spike t
arrives, as seen in Fig. 5~b!, we see that for 62 ms<Tp
<74 ms the system switches to out-of-phase oscillatio
Then, for a broad range ofTp it remains in phase; for anothe
range of Tp , 105 ms<Tp<142 ms, it switches again. Fi
nally, for Tp.142 ms no switching occurs; the system sta

FIG. 4. Time series showing the effect of 1 s of theperiodic
external forcing in the CPG circuit at several values ofTp : 150, 71,
180, and 125 ms.
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in phase and stays in phase. Similarly, if we begin with o
of-phase oscillations when the spike train arrives, we se
Fig. 5~a! broad regions where the out-of-phase behavior p
sists and then for 142 ms<Tp<180 ms the spike train
switches the oscillations to in-phase behavior. ForTp
>180 ms there is some indication of out-of-phase per
tence again. In each case reported here the duration o
spike train was about 1 s. This meansNs'1 s/Tp total spikes
were received by the circuits.

We have studied the variability as a function of one p
rameter~the period of the input!; however, it is natural to ask
what effect the rest of the input parameters have, in part
lar, the strength of the synaptic input and the duration of
input. We selected four different regions of switching as r

FIG. 5. ~Time lag between bursts!/Tp as a function ofTp , for
the CPG circuit withgele56 nS andgGABAA

520 nS, when the cir-
cuit starts with~a! out-of-phase and~b! in-phase oscillations. In~a!
we see that for a wide range ofTp a circuit starting out of phase
stays that way. When 142 ms<Tp<180 ms switching to in-phase
~zero time lag! oscillations occurs.

FIG. 6. ~Time lag between bursts!/Tp as a function of the
strength of the input for the CPG circuit withgele56 nS and
gGABAA

520 nS, when the circuit starts~a! out of phase withTp

5100 ms, ~b! out of phase withTp5160 ms, ~c! in phase with
Tp5130 ms, and~d! in phase withTp5160 ms.
-
in
r-

-
he

-

u-
e
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evant examples. In Fig. 6 we can see four cases for a g
periodTp of the input. The phase lag versus the strength
the input is plotted. One general observation is display
The variability of the time lag does not depend as sensitiv
on the strength of the input as on the period of the inp
Nonetheless, in Fig. 6 we can see a small region wh
starting from out-of-phase initial conditions andTp
5100 ms, in-phase behavior can be achieved. A com
mentary effect can be observed in Fig. 6~d! where, starting
from in-phase initial conditions, out-of-phase behavior
reached. One conclusion is drawn from this figure: If w
want the system behavior to change rapidly, the frequenc
the input is the best parameter to be chosen. In Fig. 7 we
the variation of the phase lag as a function of the duration
the input. We can see that from a particular critical value
the input window~stimulus length! there are no changes i
the phase lag, which means that if we want to change
state of the system from in-phase to out-of-phase beha
we need a train of 1.5 s, while if we want to transfer t
system to out of phase a shorter time of 0.4 s is required

2. Jitter in the spike inputs

To distinguish among these regions of attractor switchi
we examined the structural stability of each in the prese
of jitter in the timing of the pulses in the incoming spik
train. We altered the times at which neurotransmitter rele
initiates a spike by adding a small random variation totn :

tn5nTp1T01Dts~ t !.

Again s(t) is Gaussian white noise with standard deviati
unity andDt is the scale of the allowed timing jitter.

In Fig. 8 we present some results of the effect of timi
jitter on the switching ability of our circuits. First, in Fig
8~a! we start with out-of-phase oscillations and allow a sp
train with Tp5160 ms to arrive at the CPG circuit. IfDt

FIG. 7. ~Time lag between bursts!/Tp as a function of the dura-
tion of the input for the CPG circuit withgele56 nS andgGABAA

520 nS, when the circuit starts with~a! out of phase withTp

5100 ms, ~b! out of phase withTp5160 ms, ~c! in phase with
Tp5130 ms, and~d! in phase withTp5160 ms.
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6424 PRE 58MIKHAIL RABINOVICH et al.
FIG. 8. ~a! Ratio of time lag toTp as a function of the magni
tude Dt of time jitter when we start with out-of-phase initial con
ditions and the spike train hasTp5160 ms. WhenDt50, this situ-
ation results in a switch to in-phase~time lag zero! oscillations from
out-of-phase motions.~b! Time series forTp5160 ms with a jitter
of Dt520 ms. This shows the robustness in switching state des
considerable jitter. ~c! Ratio of time lag to period as a function o
the magnitude ofDt when we start with in-phase conditions and t
spike train hasTp5125 ms. WhenDt50 this situation results in a
switch to out-of-phase oscillations from in-phase oscillations.~d!
Time series showing switching with 3-ms jitter andTp5125 ms.
50, this would switch the circuit to in-phase behavior as
see from the top panel of Fig. 4. Now we see that this
havior persists for 0<Tp<25 ms after which the switching
becomes somewhat irregular. A sample of the time se
observed with jittery spike trains is seen in Fig. 8~b!, where
starting from out-of-phase oscillations a spike train withTp
5160 ms arrives but withDt520 ms. The system stil
switches as it would wereDt50.

When we investigate the ability of the system to swit
from an initial in-phase state to out-of-phase motion w
jitter present, the situation changes. In Fig. 8~c! we show the
result of starting in phase and applying a spike train w
Tp5125 ms. IfDt50, this would switch the state to out o
phase. A sample of the time series observed with jittery sp
trains is seen in Fig. 8~d!. Now we see that the whole regim
is strongly dependent on the magnitude of the jitter. T
apparent lack of robustness of in-phase to out-of-ph
switching led us to investigate the possibility of deliverin
the input spike train to the circuits in a nonsymmetric fash
and we take this up below.

B. Thalamocortical system

Using the same excitatory AMPA couplings now appli
to the two TC neurons in the thalamocortical circuit@see Fig.
1~b!# we again investigate the dependence of attrac
switching on Tp . Figure 9 shows the response of th
thalamocortical circuit to these external stimuli when t
maximal conductancegGABAA

places the circuit in the region

of bistability: gGABAA
580 nS. See Fig. 3~c!. For Tp

5170 ms andTp5200 ms we see that in-phase oscillatio

ite

FIG. 9. Time series showing the effect of 1 s of theperiodic
forcing of the RE-TC circuit at several values ofTp : 150, 71, 180,
and 125 ms. There is an expanded time scale view of the memb
voltage in the RE-TC circuit above the upper panel.
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remain in phase. WhenTp is changed to 125 ms, the in-pha
behavior is switched to out-of-phase oscillations. In tu
these out-of-phase motions are switched back to in-ph
oscillations when a spike train withTp5180 ms arrives. As
before, approximately 1 s of input was applied in each cas

Again we present another look at this switching ability
examining what happens first to an out-of-phase oscilla
when a spike train of spacingTp perturbs it and then ask th
same when the spike train perturbs an in-phase oscillat
The upper panel of Fig. 10 summarizes the capability of
excitatory spike trains to switch from initially out-of-phas
motions to in-phase motions as a function ofTp , while the
lower panel shows the switching capability from an initia
in-phase motion to out-of-phase oscillations asTp varies.
The time series in Fig. 9 are examples of these switch
capabilities.

In qualitative terms the phenomena we see in Fig. 10
be described by the following. The incoming spike tra
evokes EPSPs in the thalamic relay cells. The small EP
that occurs soon after a burst discharge does not affec
TC cell behavior because the inactivation of the lo
threshold Ca21 currentI T prevents LTS generation. The hy
perpolarization of the TC cell deinactivates theI T current
and the later EPSPs evoke depolarization that results in
LTS. When TC cells oscillate out of phase, the excitato
input changes the behavior of one of the cells and does
influence the behavior of the other. Therefore, the phase
the oscillations are shifted and the TC cells are locked i
regime of in-phase oscillations. Such a mechanism works
specific frequencies only. For higher-frequency stimulat
the time delays between EPSPs is not long enough to d
activate theI T current and TC cells show a burst dischar
for each second EPSP. This results in their out-of-phase
cillations.

Again we are able to conclude that the three essen
features observed in the driven CPG circuit are repea
here: switching, persistence of the switched state after
spike train phases, and rapid switching caused by just a
spikes. The dependence of these effects on the paramete
stimulation was investigated by varying the maximal co

FIG. 10. ~Time lag between bursts!/Tp as a function ofTp for
the RE-TC circuit withgGABAA

580 nS. This is in the region o
bistability. We show this time lag toTp ratio when the circuit starts
with ~a! out-of-phase oscillations and~b! in-phase oscillations.
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ductance of the input AMPA synapses~amplitude of stimu-
lation!. Figure 11 presents the results of this simulation
out-of-phase initial oscillations in the RE-TC circuit. W
found that decrease of the maximal conductance@see Figs.
11~a! and 11~b!# shifts the boundaries between in-phase a
out-of-phase modes of oscillations to the right~lower fre-
quencies!, while increase of the amplitude of stimulatio
shifts them to the left~higher frequencies!. At the same time,
the width of the regions where out-of-phase and in-ph
oscillations were observed is almost unchanged relative
the amplitude of stimulation~compare Figs. 10 and 11!. This
result indicates that the strength of the input AMPA synap
is the important parameter controlling stimulus-depend
oscillations in the RE-TC circuit. The change of the maxim
conductance for these synapses~e.g., as the concentration o
some neuromodulators is changed! may shift the frequency
band where the RE-TC circuit is switched from one oscil
tory mode to another one. We did not examine the robustn
to spike jitter of the detailed results summarized in Fig.
for the RE-TC circuits.

IV. DISCUSSION

In this paper we have investigated two simple neural c
cuits coming from two diverse sources. One is a neu
couple connected reciprocally by a gap junction and by
hibitory GABAA synapses. It is intended to model a pair
neurons found in the Pyloric CPG of the California spi
lobster, though removed from synaptic connection with
remainder of the CPG neurons. The second is a circuit c
sisting of coupled pairs of thalamocortical relay and thalam
reticular cells with both inhibitory GABAA and GABAB cou-
plings as well as AMPA excitatory connections. The co
mon feature of the two circuits is that they have a balanc
of influences among their constituent neurons coming from
combination of strong direct couplings, inhibitory coupling
and excitatory couplings. This balance leads in each b

FIG. 11. ~Time lag between bursts!/Tp in the RE-TC circuit as a
function of Tp for four different strengths of the coupling:~a!
gAMPA50.175mS, ~b! gAMPA50.15mS, ~c! gAMPA50.225mS,
and ~d! gAMPA50.25mS. Changing the maximal conductance
the input AMPA synapses shifts the regions of in-phase and out
phase oscillations, but the width of these regions is maintained
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circuit to at least one region in their parameter space wh
bistability and hysteresis occurs. Balanced circuits with m
complex connectivity among simpler neural elements h
been investigated for their potential role in generating c
otic responses to external input@24#.

Bistability occurs when there are two distinct solutions
the conductance based differential equations describing
circuit that coexist over a range of settings of the vario
parameters in the equations. In this work we explored
range of electrical couplings over which the CPG circuit h
two distinct solutions and we investigated a range of GABA
coupling over which the RE-TC cells act in the same fashi
In the state space of the systems we see two distinct orbi
phase portraits for the two solution sets. These represent
distinct attractors for the dissipative neural dynami
Whether after initial transient behavior the circuit ends up
one attractor or another depends on the initial conditions
the solution of the differential equations. In state space e
attractor has a set of initial conditions that bring the solut
to it and this collection of initial conditions is called its bas
of attraction. Figure 12 shows the two attractors for t
RE-TC system in the same state space. As one can see
two attractors are quite close in this space, supporting
fact that transitions between them can be easily induced
the periodic spike trains we introduce.

The model neurons in our circuit were formulated follow
ing extensive investigation of conductance based model
earlier workers. Essentially all of the Hodgkin-Huxley d
namics formulated in the Appendix for these circuits h
appeared in earlier work. Our starting point in this work w
to utilize those formulations and inquire how these circu
from diverse origins but having at least one region of bis
bility might behave in a common, possibly functional, ma
ner. To explore this we connected each circuit as show
Fig. 1 to a source of external spike trains with varying int

FIG. 12. State space portrait of the two coexisting attractors
the RE-TC system. The solid line is the orbit in@V(t),I T(t),I h(t)#
space of the in-phase oscillations. The dotted line is the path ta
in the same state space by the out-of-phase oscillations. The c
ness of the two attractors leads to the ease with which spike tr
with appropriateTp can induce transitions between them. T
GABAA conductances between the RE cells was set at the v
100 nS for each of the state space trajectories in this figure. One
see from Fig. 3 that this places the system in the region of bista
ity.
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spike intervalTp . We took spike trains of total length abou
1 s over a range 50 ms<Tp<250 ms. Our primary question
was whether over broad ranges ofTp such a short spike train
could reset the oscillations of the circuits from one behav
say in phase, to the other, say out-of-phase, and if so
investigate how robust this resetting would be to noise in
circuit conductances and to error or jitter in the precision
Tp .

We showed that the short spike train could reset the
cillators over broad values ofTp in a range of substantia
biological interest and, strikingly, we found that the res
when it occurred, happened in the course of reception of
a few spikes. Long, persistent chains of spikes were not
quired for the reset. Clearly the spike train acts as a ‘‘re
button’’ for the initial conditions of the coupled neural osc
lators pushing the new initial conditions in the other basin
attraction when reset occurs and leaving it in the origi
basin when reset does not occur. It seems of potential
logical importance that reset happens at someTp and not
others, that reset from in phase to out of phase happens m
easily when a time lag or phase difference is present betw
the two incoming excitatory AMPA inputs, and that there
a distinct robustness to the reset capability against nois
the synaptic conductances and in the precision ofTp .

Two potential uses may be made of the reset capability
bistable circuits. First, in lobster CPG circuits it is know
that neuromodulators can alter the character of neural o
lations in accordance with selected functional behavior@1#.
The reset capability of sensory spike trains may also be u
to achieve this goal. Second, this reset capability may b
way in which neurons interpret information coming fro
sensory sources and reformat it for use further along in
animals processing and decision system. If this ‘‘learnin
function is correct, the mechanism could potentially be u
ful in short term memory where more complex circuit
would be reset for such a purpose.

The results here also serve as a setting for experime
tion @25#, especially on the CPG circuit where a couple e
sentially identical to our model circuit can be identified a
isolated in the lobster Pyloric CPG. The results also sugg
building a nonlinear circuit model@26# of the neurons and
their connections to investigate in a more systematic fash
regions of bi- and multistability and ranges of variation
couplings and interspike intervals than is possible in so
ware explorations.

Finally, as a suggestive model for biomimetic uses, o
can view these circuits as sensitive sensors of short pulse
signals with different frequency and phase. Both softw
and hardware investigations of the range of usable sensit
of such a sensor would be quite interesting.
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APPENDIX

The general format for conductance models that are
ordinary differential equations of Hodgkin-Huxley type@14#
is

Cm

dVi~ t !

dt
52gL@Vi~ t !2EL#2(

j 51

N

I j@Vi~ t !,t#

2(
j 51

Nsyn

I j
syn@Vi~ t !,t#2gele(

j Þ i
@Vi~ t !2Vj~ t !#,

~A1!

whereVi(t) is the membrane potential of thei th cell andCm
is the membrane capacitance.gL is the leakage conductanc
and EL its reverse membrane potential.gele is the conduc-
tance of the electrical coupling. All intrinsic ionic curren
I j@V(t),t# have the general form

I j@V~ t !,t#5gjm~ t !ph~ t !q@V~ t !2Ej #, ~A2!

where gj is the maximal conductance.m(t) represents the
activation of the ionic channels andh(t) the inactivation.
m(t) andh(t) are dimensionless and lie in the interval@0,1#.
Ej is the reversal potential for currentI j . The time depen-
dence ofm(t) andh(t) are each assumed to be given as

tm~V!
dm~ t !

dt
5m`~V!2m~ t ! ~A3!

and

th~V!
dh~ t !

dt
5h`~V!2h~ t !, ~A4!

wherem`(V), h`(V), tm(V), andth(V) are nonlinear func-
tions of V extracted from experimental recordings of ion
currents. Unless otherwise stated, the time units fortm and
th are milliseconds.I j

syn@Vi(t),t# is the current into neuroni
coming from neuronj through a synaptic connection.

1. Stomatogastric circuit

The model stomatogastric neuron is mainly based
@27,28#. For each cell in the circuit we include a sodiu
currentI Na, a persistent sodium currentI p Na, a high thresh-
old calcium currentI Ca, a calcium-dependent potassium cu
rent I K~Ca! , a delayed-rectifier potassium currentI Kd , a low
thresholdI h current, and a leakage currentI L . The voltage
time dependence for either neuron in the circuit is given
-
t
t
.
-

e

n

y

Cm

dVi~ t !

dt
52gL@Vi~ t !2EL#2I Na@Vi~ t !,t#2I p Na@Vi~ t !,t#

2I Ca@Vi~ t !,t#2I Kd@Vi~ t !,t#2I K~Ca!@Vi~ t !,t#

2I h@Vi~ t !,t#2I dc2gele(
j Þ i

@Vi~ t !2Vj~ t !#

2I GABAA
@Vj~ t !,t#2I ext~ t !. ~A5!

I GABAA
@Vj (t),t# is the inhibitory connection reflecting th

current seen in neuroni from the activity of neuronj ; it is
described below.I ext is the external perturbation from spik
trains injected through AMPA connections and is also d
scribed below.I dc is a hyperpolarizing dc current injecte
into each neuron. We tookI dc50.16 nA in our computa-
tions.Cm50.33 nF.

The sodium current has the form

I Na@V~ t !,t#5gNam~ t !3h~ t !@V~ t !2ENa#, ~A6!

with gNa570 mS andENa550 mV. In addition, for this cur-
rent we have

m`~V!51/$11exp@~2V225.5!/5.29#%,

h`~V!51/$11exp@~V148.9!/5.18#%,

tm~V!51.3221.26/$11exp@~21202V!/25#%, ~A7!

th~V!50.67$11exp@~262.92V!/10#%

3„1.511/$11exp@~V134.9!/3.6#%….

The persistent sodium current was taken to be

I p Na@V~ t !,t#5gp Nam~ t !3h~ t !@V~ t !2Ep Na#, ~A8!

wheregp Na53 mS andEp Na550 mV. In addition, for this
current we have

m`~V!51/$11exp@~2V226.8!/8.2#%,

h`~V!51/~11exp~V148.5!/4.8W!,
~A9!

tm~V!519.8210.7/$11exp@~226.52V!/8.6#%,

th~V!56662379/$11exp@~233.62V!/11.7#%.

We used the calcium current

I Ca@V~ t !,t#5gCam~ t !3h~ t !@V~ t !2ECa#, ~A10!

where gCa56 mS and ECa5120 mV. In addition, for this
current we have

m`~V!51/$11exp@~2V227.1!/7.18#%,

h`~V!51/$11exp@~V130.1!/5.5#%,
~A11!

tm~V!530.7221.3/$11exp@~268.12V!/20.5#%,

th~V!5105289.8/$11exp@~2552V!/16.9#%.

For the calcium dependent potassium current we took
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I K~Ca!@V~ t !,t#5gK~Ca!m~ t !4@V~ t !2EK~Ca!#, ~A12!

wheregK~Ca!518.5mS andEK~Ca!580 mV. In addition, for
this current we have

m`~V,@Ca# !5„@Ca#/~@Ca#13!…

3$11exp@~2V228.3!/12.6#%,
~A13!

tm~V!590.3275.1/$11exp@~2462V!/22.7#%.

The time dependence of the calcium concentration is take
satisfy the simplified kinematics

d@Ca#~ t !

dt
52AICa@V~ t !,t#2B@Ca#~ t !1C, ~A14!

whereA5100 nM /(nA ms),B55 ms21, and the resting cal-
cium concentration isC550 nM /ms. This is a simplification
of the intracellular calcium dynamics@29#, but for the pur-
poses of this paper, it provides an adequate representatio
the influence on calcium on this channel.

The delayed rectifier-potassium current was modeled

I Kd@V~ t !,t#5gKdm~ t !4@V~ t !2EKd#, ~A15!

where gKd520 mS andEKd580 mV. In addition, for this
current we have

m`~V!51/$11exp@~2V212.3!/11.8#%,
~A16!

tm~V!57.226.4/$11exp@~228.32V!/19.2#%.

Finally, the low threshold current was taken to be

I h@V~ t !,t#5ghm~ t !@V~ t !2Eh#, ~A17!

where gh50.08mS andEh520 mV. In addition, for this
current we have

m`~V!51/$11exp@~V178.3!/6.5#%,
~A18!

tm~V!527211499/$11exp@~242.22V!/8.73#%.

For the leakage current we setgL50.008mS and EL
565 mV.

Inhibitory synaptic transmission was modeled using
form of GABAA synaptic currents developed for vertebra
neurons. These are described below@30#.

2. Thalamocortical circuit

The thalamocortical circuit consists of pairs of TC a
thalamic RE neurons connected as shown in Fig. 1~b!. For
each RE and TC cell we included a fast sodium currentI Na,
a fast potassium currentI K @31#, a low-threshold Ca21 cur-
rent I T @32,33,20#, and a potassium leak currentI KL
5gKL(V2VKL). A hyperpolarization-activated cation cu
rent I h @18,32# and the external AMPA injectionI ext(t) were
also taken into account for the TC cells. The synaptic c
nections via GABAA and GABAB inhibition as described
below and shown in Fig. 1~b! are also included. The mem
brane potentials of the neurons are governed by the equa
to

of

e

-

ns

Cm

dVRE~ t !

dt
52gL@VRE~ t !2EL#2I Na@VRE~ t !,t#

2I K@VRE~ t !,t#2I TRE
2I GABAA

2I AMPA ,

~A19!

Cm

dVTC~ t !

dt
52gL@VTC~ t !2EL#2I Na@VTC~ t !,t#

2I K@VTC~ t !,t#2I TTC
2I h2I GABAA

2I GABAB
2I ext~ t !.

We used Cm50.143 nF ~area 1.4331024 cm2), gL
57.15 nS, and EL5280 mV for the RE cell @22#
and Cm50.29 nF ~area 2.931024 cm2), gL52.9 nS, EL
5270 mV, gKL56.4 nS, andEKL5295 mV for the TC
cells @34#. I ext(t) is the external AMPA synaptic current dis
cussed in the text. In one AMPA connection we tookgext
50.2 nS and in the othergext50.18 nS.

The sodium current for the RE cells has the form

I Na@V~ t !,t#5gNam~ t !3h~ t !@V~ t !2ENa#, ~A20!

with gNa514 mS andENa550 mV, while for the TC cells
we write

I Na@V~ t !,t#5gNam~ t !3h~ t !@V~ t !2ENa#, ~A21!

with the same reversal potential as for RE cells butgNa
526.1mS. In addition, for both cells we have

m`~V!5am~V!/@am~V!1bm~V!#,

h`~V!5ah~V!/@ah~V!1bh~V!#,
~A22!

tm~V!51/@am~V!1bm~V!#,

th~V!51/@ah~V!1bh~V!#,

where

am~V!50.32@132v2~V!#„exp$@132v2~V!#/4%21…21,

bm~V!50.28@v2~V!240#„exp$@v2~V!240#/5%21…21,

ah~V!50.128 exp$@172v2~V!#/18%,

bh~V!54/„exp$@402v2~V!#/5%11…,

v2~V!5V2~250!.

The potassium currentI K was modeled as

I K@V~ t !,t#5gKm~ t !4@V~ t !2EK#, ~A23!

with gK51.43mS andEK5295 mn for the RE cells, and

I K@V~ t !,t#5gKm~ t !4@V~ t !2EK#, ~A24!

with the sameEK as for the RE cells andgK52.9 mS for the
TC cells. In addition, for these currents we have
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m`~V!5am~V!/@am~V!1bm~V!#,

tm~V!51/@am~V!1bm~V!#,

am~V!50.032@152v2~V!#„exp$@152v2~V!#/5%21…21,
~A25!

bm~V!50.5 exp$@102v2~V!#/40%,

v2~V!5V2~250!.

The I TRE
current for the RE cell was taken to be

I TRE
@V~ t !,t#5gTRE

m~ t !2h~ t !@V~ t !2ETRE
#, ~A26!

wheregTRE
50.25mS andETRE

depends on the Ca21 concen-

tration inside~@Ca#! and outside (@Ca#0) the cell. These are
defined by the Nerst equation

ETRE
5

RT

2F
ln~@Ca#/@Ca#0!, ~A27!

where R58.31441,T5309.15,F596 489, and @Ca#0
52 mM .

In addition, we have for this current

m`~V!51/$11exp@2~V152!/7.4#%,

tm~V!5„311/$exp@~V127!/10#

1exp@2~V1102!/15#%…/fm ,
~A28!

h`~V!51/$11exp@~V180!/5#%,

th~V!5„8511/$exp@~V148!/4#

1exp@2~V1407!/50#%…/fh .

We have defined the quantitiesfm andfh as

fm5fh52.5~TC224!/10, ~A29!

with TC536 °C.
The I TTC

current is taken to be

I TTC
@V~ t !,t#5gTTC

m~ t !2h~ t !@V~ t !2ETTC
#, ~A30!

where gTTC
50.87mS and the reversal potentialETTC

de-

pends on the Ca21 concentration in the same way as ju
noted for the RE cell. In addition, we have for this curren

m`~V!51/$11exp@2~V159!/6.2#%,

tm~V!5„1/$exp@2~V1131.6!/16.7#

1exp@~V116.8!/18.2#%10.612…/fm ,
~A31!

h`~V!51/$11exp@~V183!/4#%,

th~V!5„30.81$211.41exp@~V1115.2!/5#%

3$11exp@~V186!/3.2#%21
…/fh .

We have defined the quantitiesfm andfh as
fm53.55~TC224!/10, fh53~TC224!/10, ~A32!

with TC536 °C.
Finally, we model theI h current for the TC cell as

I h@V~ t !,t#5ghm~ t !@V~ t !2Eh#, ~A33!

wheregh55.8 nS andEh5240 mV. In addition, we have
for this current

m`~V!51/$11exp@~V175!/5.5#%,

tm~V!5„2011000/$exp@~V171.5!/14.2#

1exp@2~V189!/11.6#%…/fm , ~A34!

fm53~TC224!/10,

with TC536 °C. For both RE and TC cells the calcium d
namics is described by a simple model@20#

d@Ca#

dt
52AIT@V~ t !,t#2KT@Ca#/~@Ca#1Kd!,

where A50.362 mM /ms mA for the RE cell, A
50.179 mM /ms mA for the TC cell,T5mM /ms, andKd
50.0001 mM @35#.

3. Synaptic couplings

The GABAA and AMPA synaptic currents were modele
by a first-order activation scheme~see the review in@36#!.
The current was given by

I syn@V~ t !,t#5gsyn@O#~ t !@V~ t !2Esyn#,

wheregsyn is the maximal conductivity andEsyn is the rever-
sal potential. For AMPA receptorsEsyn50 mV and for
GABAA receptorsEsyn5280 mV. @O#(t) is the fraction of
open channels

d@O#~ t !

dt
5a$12@O#~ t !%@T#~ t !2b@O#~ t !

and @T#(t) is the concentration of transmitter released fro
time t to time tmax,

@T#~ t !5Au~ tmax2t !u~ t !,

whereu(x) is the Heaviside function.
The synaptic parameter values used in the stomatoga

model were chosen asA51, tmax59 ms,a50.5 ms21, and
b50.2 ms21 for excitatory ~AMPA! input synapses andA
51, tmax53 ms,a50.5 ms21, and b50.8 ms21 for inhibi-
tory (GABAA) interconnecting synapses. The strength of
external forcing and the inhibitory coupling aregAMPA
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550 nS andgGABAA
520 nS throughout all the numerica

integrations. The strength of electrical couplinggele ranges
from 0 nS to 20 nS.

The synaptic parameter values used in the thalamocor
model areA50.5 andtmax50.3 ms and the rate constan
were chosen asa55 ms andb50.166 ms for GABAA syn-
apses anda50.94 ms andb50.18 ms for AMPA synapses
The strength of the external forcing isgAMPA50.2 mS. The
strength of GABAA synapses from RE to TC cells i
gGABAA

50.2 mS and the coupling between RE cells was v
ied from 0 and 0.2mS. The maximal conductance of AMPA
synapses isgAMPA50.8 mS.

GABAB receptors were described by a more complex
tivation scheme taking into account the activation of K1

channels by G proteins@35,22#
s-

ce

ns

v,

-

.

a

rp

L-
i-
al

-

-

I GABAB
@V~ t !,t#5gGABAB

@G#4

@G#41Kd
@V~ t !2Ek#,

d@R#~ t !

dt
5K1$12@R#~ t !%@T#~ t !2K2@R#~ t !, ~A35!

d@G#~ t !

dt
5K3@R#~ t !2K4@G#~ t !,

where @R#(t) is the fraction of activated receptors an
@G#(t) is the concentration ofG proteins. In these equation
we choseK150.52, K250.0013, K350.098, K450.033,
andKd5100. gGABAB

50.05mS.
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