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We investigate the ability of oscillating neural circuits to switch between different states of oscillation in two
basic neural circuits. We model two quite distinct small neural circuits. The first circuit is based on invertebrate
central pattern generat¢€PQ studies[A. I. Selverston and M. MoulinsThe Crustacean Stomatogastric
System(Springer-Verlag, Berlin, 1987 and is composed of two neurons coupled via both gap junction and
inhibitory synapses. The second consists of coupled pairs of interconnected thalamocortical relay and thalamic
reticular neurons with both inhibitory and excitatory synaptic coupling. The latter is an elementary unit of the
thalamic networks passing sensory information to the cerebral cgvte$teriade, D. A. McCormick, and T.

J. Sejnowski, Scienc262, 679 (1993]. Both circuits have contradictory coupling between symmetric parts.
The thalamocortical model has excitatory and inhibitory connections and the CPG has reciprocal inhibitory and
electrical coupling. We describe the dynamics of the individual neurons in these circuits by conductance based
ordinary differential equations of Hodgkin-Huxley typé& Physiol.(London 117, 500 (1952]. Both model

circuits exhibit bistability and hysteresis in a wide region of coupling strengths. The two main modes of
behavior are in-phase and out-of-phase oscillations of the symmetric parts of the network. We investigate the
response of these circuits, while they are operating in bistable regimes, to externally imposed excitatory spike
trains with varying interspike timing and small amplitude pulses. These are meant to represent spike trains
received by the basic circuits from sensory neurons. Circuits operating in a bistable region are sensitive to the
frequency of these excitatory inputs. Frequency variations lead to changes from in-phase to out-of-phase
coordination or vice versa. The signaling information contained in a spike train driving the network can place
the circuit into one or another state depending on the interspike interval and this happens within a few spikes.
These states are maintained by the basic circuit after the input signal is ended. When a new signal of the correct
frequency enters the circuit, it can be switched to another state with the samgS#563-651X98)13011-9

PACS numbdps): 87.10+e, 87.22.As

I. INTRODUCTION is given by the electrical and inhibitory connections. The
electrical coupling tends to drive the two neurons into
Many experiments indicate that spiking-bursting neuronslosely in-phase synchronized oscillations, while the inhibi-
have special importance for rhythmic motor contfd|3,4]  tory couplings lead to a tendency for out-of-phase oscilla-
and oscillatory brain function,6]. In neural assemblies the tions. In the thalamocortical circuit the two sides of the as-
collective dynamics of such neurons may generate a set afembly are connected by both excitatory and inhibitory links.
characteristic phase differences or time lags that represent In this paper we inquire into the utility of such antagonis-
distinct states of the oscillatory behavior. Oscillatory circuitstic connections in neural circuitry. In a general way we ex-
with quite different architectures may show similar dynami-pect excitatory neural connections and electrical connections
cal features and we inquire here into a potential utilization ofto produce in-phase bursting oscillations, while mutual in-
the similarities of such diverse neural circuits. We investi-hibitory coupling tends to produce out-of-phase behavior for
gate two basic neural circuits, which are presented in Fig. lthe coupled neurons. The exceptions to this “rule” are dis-
Figure Xa) shows a neural couple from the lobster stomato-cussed i 7-9]. In particular, in[10] it was shown that if the
gastric ganglioSTG) [1] and Fig. 1b) a typical vertebrate rise time of the synapse is longer than the duration of an
thalamocortical circuit[2]. Although the functional role action potential, inhibition not excitation leads to synchro-
played by these circuits is very different, the presence ohized firing. We suggest here, following earlier wdrkl],
antagonistic coupling between different parts of the circuitthat this antagonistic structure of neural connections can be
makes them exhibit common dynamical features. In the cenimportant for organizing bistable or multistable behavior in
tral pattern generatdiCPQ circuit the antagonistic coupling neural circuits. We should note that a multistability may ap-
pear in the coupled spiking-bursting neurons connected with
a gap junction[12] or synaptic exponential couplinglLO]
*Present address: Institute for Nonlinear Science, University ofllone; however, the region of multistability is usually
California—San Diego, La Jolla, CA 92093-0402. FAX: 619-534- broader in systems with contradictory coupling. Such multi-
7664. Electronic address: hdia@hamilton.ucsd.edu stability can facilitate the storage and encoding of informa-
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IIl. MODELS

We describe the behavior of an individual neuron by a
system of ordinary differential equations of Hodgkin-Huxley
type[14]. Such conductance-based models of neural dynam-
ics provide a realistic description for the generation of action
potential spikes as well as of the bursting behavior. The de-
tailed equations for the membrane potential and the other
dynamical quantities are described in the Appendix. The syn-
aptic couplings are represented by kinetic models consistent
with the Hodgkin-Huxley formalism in modeling ionic chan-
nels. Our model systems have been integrated using several
independent methods: embedded Runge-Kuifd) $15],
backward differentiation16], and in some cases implicit
Runge-Kuttg 17] methods. The results from each of the dif-
ferent methods of numerical integration were consistent with
each other.

A. CPG system

The autonomous dynamics of the model stomatogastric
neuron is qualitatively as follows. There is a slow inward,
depolarizing currenk, that drives the membrane potential to
the point where a fast calcium currdpy, is activated. This is
the beginning of the burst. THe, leads to the activation of
Ina» Which depolarizes the cell and generates action poten-
tials or spikes. Whild -, is activated, the calcium concentra-
time T tion inside the cell is raised. It produces activation of the

FIG. 1. Basic circuits(a CPG circuit and(b) thalamocortical ~ Potassium current,(Ca), which determines the end of the
circuit. Solid circles indicate inhibitory connections and openburst. The cycle is repeated with the reactivationl ;pf In
circles excitatory connections. The resistor symbol denotes a gafhis circuit each neuron has intrinsic oscillations. When
junction connection. The manner in which the external inputs werecoupled by inhibitory and electrical synapses as shown in
introduced through AMPA excitatory synapses is also shownFig. 1(a), the pair of STG neurons produced bursts that were
Shown beneath each circuit is a schematic representation of theither in phase or out of phase. Over a range of the electrical
input spike trains. The input signals started at a tifigeand were  coupling gee, 5 NS<gee=<12 NS, more than one attractor
spaced byT,. We investigated the dependence of attractor switchas present in the state space of the CPG circuit.
ing on the spike timing', . A sample of the responses of the basic  |n Fig. 2(c) we show the time lag between the right and
circuits to inputs with differenl, can be seen in Figs. 4 and 9. |eft neural oscillators in this circuit as a function of the gap
Als_o in t_hose figures is a more realistic picture of the incomingjynction or electrical coupling,, between them. The inhibi-
spike trains. tory couplings were held fixed afs,=20 nS. This is the

tion that is received by neural assemblies. We will show her&/alue we use for all the calculations reported here. When the
that the switching of the circuit from one state to another carfime lag between the neurons is zero, we have in-phase be-
be accomplished by an incoming spike train and that whethdpavior. As we increasgee from zero, the oscillations are out
the switch is made depends on the frequency of the spikef phase with a time lag about 90 rfisig. 2(b)]. This time
train. After the spike train is completed, the circuit remainslag varies little untilgge~12 nS. At that point the time lag
in the state where the spike impulses left it until anotherdrops rapidly to zero and the system oscillates in ph&&p
spike train of appropriate frequency comes along to switch it2(a)]. As we turn the value 0fj. down fromgge>15 nS,

We begin by analyzing the autonomous bursting activitythe in-phase oscillations persist urdil~5 nS and then the
of these circuits using conductance based models of eadystem returns to out-of-phase behavior again. This differ-
neural element embodied in Hodgkin-Huxley differential ence in the state of the system as we reach certain values of
equations. A common feature of oscillations in these circuitge, from above or from below is the hysteresis or bistability
is a broad region of bistability encountered as interneuralve noted earlier. In Fig. ) we also have cases where a
coupling strengths are varied. In many regions of parametesmall amount of Gaussian noise was added to each ionic
space at least two stable attractors coexist in the dynamicabnductancey; . We represented this noise by
state spacg¢l3]. One attractor is associated with in-phase
oscillations of the parts of the circuit and the other one is gi(e)=gi+ea(t),
associated with out-of-phase oscillations. We then inject ex-
citatory input, made up of short intervals of periodic spikewhereo(t) is white noise{a(t))=0 and{a(t)a(t’))=(t
trains, into the circuit as shown in Fig. 1. We find broad —t’). We studied two caseg=0.1 nS and=1.0 nS. One
stable regions of spike train frequency where the inpucan see that the hysteresis is quite robust against environ-
switches the circuit between the two main modes of oscillamental noise affecting the synaptic conductances. Indeed, it
tion. was a surprise to us that the smaller noise leveD.1 actu-
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65 F(a) T ' T T T Vorage 1] 7 B. Thalamocortical system
45 ] Thalamic relay cells exhibit two different modes of be-
T 25| i havior: the relay mode and burst mode. In the relay mode,
g 5[ ] corresponding to the awake state, thalamocortital) cells
§ 45 L 1 are depolarized above-60 mV. External sensory input
o evokes a train of action potentials transmitting sensory input
*.g 35 ] to the cortex. Hyperpolarization of thalamic relay cells dur-
2 55 | A ing sleep makes possible a deinactivation of low-threshold
75 ] C&" currents and leads to the burst mode. In this case the
00 01 o5 o3 o7 o5 os o7 os s 1o thalamus generates specific sleep-related oscillations and tha-
Time (sec) lamic relay cells no longer relay sensory input to the cortex.
: : : : : : : In contrast, synchronization of thalamic oscillations by spe-
55 (b) " Joltage 1) | cific sensory signals will evoke a powerful input to the cor-
Voltage 2|
s 35 tex.
E Sleeping thalamic oscillations are generated as a result of
2 15 synaptic interaction between thalamic relay cells and neurons
§ 5 of the thalamic reticular nucley®]. The lateral inhibitory
2 25 v-aminobutyric acid-A(GABA,) mediated connections be-
£ 45 tween reticularRE) neurons form a network that plays an
s 5 important role in the generation and spreading of thalamic
oscillations. TC cells receive a large GABAergic input from
85 T T or o5 o4 o5 o6 o7 o3 os o RE cells and send back an excitateramino-3-hydroxy-5-
Time (sec) methyl-4-isoxazolepropionic acitAMPA) connection. The
110 : : : : simplest network taking into account the essential features of

forward with ¢-0.1 of mise thalamic organization and generating specific thalamic
90 - backward with e0.1 of noise | ] rhythms consists of pairs of coupled RE and TC cells and is
— — - backward with =1 of noise

shown in Fig. 1b).
A detailed description of the dynamics of the TC and RE
. cells is contained in the Appendix. Here we give a qualitative
discussion of the behavior of these cells.
The isolated TC cell shows self-sustained, sl®wscilla-
tions due to the interaction between the low-threshold'Ca
: D bl currentl; and the hyperpolarization-activated cation current
-10 0 2 4', é é 1'0 1'2 1'4 1'6 1'8 20 I, [18,19. Depolarization of the TC cell during burst dis-
9y, (0S) 'cha'rge deactivates thg current re_sultlng in a hyperpolar-
ele ization of the cell. Hyperpolarization of the membrane po-
FIG. 2. Autonomous dynamics of the basic circuits showing thetential leads to deinactivation of the low-threshéjdcurrent
bistability that is critical to our investigations in this papé¢a) and activation of the,, current, which slowly depolarizes the
In-phase oscillations of the CPG neurons whgnp=4nS and  cell until it generates a new low-threshold spike. The RE cell
Jsyn=20 nS. (b) Out-of-phase oscillations of the CPG neurons has no intrinsic mechanisms for self-oscillations for the cur-
whengee=4 nS andg,,,=20 nS. (c) Time lag between the oscil- rents considered in the model. However, two RE cells
lations of the CPG cells as a function gf whengs,,=20 nS.  coupled by inhibition can oscillate as a result of an interac-
Here “forward” means that the control parametgy, is increased tion between low-threshold &4 currents and GABA in-
very slowly and “backward” means thagle. is reduced very hibitory postsynaptic currenf0,21].
slowly. We also show the effect of small amounts of Gaussian The dynamics of the circuit seen in Fig(bl arises from
white noise added to the conductances on the bistability or hysteghea interplay of cellular and synaptic properties in the TC
esis in this CPG circuit. In the calculations we took each .circuitand RE cells. The bursts in the RE cells activate GARB#d
conductance to have the forgfe) =g+ eo(t) with o(t) Gaussian  GagA_ receptors in the TC cells and this results in their
white noise with a rms value of unity. Cases witkr0.1 nS and hyperpolarization followed by deinactivation of the cur-
€=1.0nS are shown. rent and low-threshold spikésTSs). Burst discharges in the
TC cells evoke excitatory postsynaptic potenti@d®SP$in
ally expanded the region of bistability where stable in-phasdRE cells followed by the activation of thig current. Weak
and out-of-phase oscillations both appear at the same systeraciprocal inhibition between the RE cells produces pro-
parameter values. Looking at this effect from the point oflonged burst discharges that activate GAB#&ceptors in TC
view of the neurons as a dynamical system, this suggestseells and synchronize them in phase as seen in Fig. 3
shallow basin boundary between the two states at some vaHowever, strong reciprocal inhibitory coupling between RE
ues ofgge. The robustness of these phenomena means thatlls depresses burst discharges in these cells and the TC
the switching between system attractors we shall report onells exhibit an out-of-phase rhythm shown in Fig)3 This
shortly is a good candidate for a reliable biological mechads typical for spindle oscillation§22,23. Figure 3c) gives
nism. the time lag between TC cells as a function of maximal
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FIG. 3. Autonomous dynamics of the basic RE-TC circ(aj. In-phase oscillations. Both RE and TC cells oscillate synchronously at
~3 Hz. (b) Out-of-phase oscillations. RE cells oscillate synchronoushy 80 Hz while TC cells produce bursts each second cycle with a
frequency~5 Hz. (c) Time lag between the oscillations in TC cells as a functiong@,iBAA between RE cells. “Forward” means that the
control parameteggaga, is increased very slowly. “Backward” means thy(gABAA is reduced very slowly.

GABA, conductance between RE cells. We can see a larg&heren is the spike number in a spike train consisting\af
region of bistability 44 nS JoaeA,= 110 nS where the sys- spikes.T, is the time bgtween spikes. _The .spi.ke train sta_rts
tem exhibits in-phase or out-of-phase behavior depending ofit '_ro. The_rglease of thls_ neurotransmitter initiates the spike
the initial conditions. train by driving the fraction of open channdl®](t) from
zero to a value determined by the simple kinematics below.
lll. FREQUENCY DEPENDENCE OF STATE SWITCHING [O](t) itself enters the description of the AMPA current as
With the dynamical behavior of each circuit established, I ampa(t) = Gampal OJ(D{V(t) — Eavpal,
we now turn to the response of these basic neural assemblies
to stimulation by a series of depolarizing spikes of varying
interspike interval. The external forcing associated with
these spike trains is mediated by AMPA receptors as show
in Fig. 1.
At the synaptic junctions, neurotransmitter is released at
times

and this is added to the dynamical equations of each neuron
Hirectly receiving external output. In our calculations we
usedgampa=50 NS andE ypa=0.

The simplified dynamics ofO](t) was taken to be

Ao _ {1-[OJ(O}TI(t)— BLOI(L)
ta=nTo+To, N=12,...N, a ¢ B '
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where the timing information on the spikes is in the neu-
rotransmitter concentration represented by

T T
Voltage 1
Tp=71 ms -~ Voltage 2

Ng

[TI(L) =An§=:1 O(tmax—tn) 6(tp).

A is the overall amplitude of neurotransmittéx, «, 8, and
tmax @re constants given in the Appendi.) is the Heavi- @

side function.Ng spikes initiated at times, with spacingT, g 3¢ \ WhUUtLWMUk

are delivered to the circuit. We start a spike train by selecting < 00 04 08 12 16 20 24 28 32 36 40
a series ofT, and then associating that with g, and a Time (sec)

number of spikes. The latter is chosen so that the spike trail
lasts about 1 s. Figures 4 and 9 show examples of how wk
can initiate spike trains at varioulg, and have them inject
current into the AMPA connections at interspike intervals of :
T,. We varyT, to investigate the dependence of the circuit
response to the interpulse interval, stimulus length, and am
plitude.

In each basic circuit, we explore the dependencé pof
in-phase or out-of-phase synchronization of the parts of the
circuit. We also examine the persistence of changes in the L
oscillations after thé\g spikes have passed. 52 56 60 64 68 72 76

We made the external AMPA synaptic connections Time (sec)
slightly unsymmetric to provide both some realism in the
gﬁltjgll:npghggg E)Osg:g;:gﬁsar:/\?:aFsrchr:gstmgnpgﬁ]rtn|Innrggfesfjéo xternal forcing in the CPG circuit at several value§ gf 150, 71,

180, and 125 ms.
tail below, but for the moment we set the conductances in thé
two AMPA couplings different by 10%. In the CPG circuit
we setgampa=50 NS in one synaptic contact ampa  a state wheré(Ca) is active or the calcium current is al-
=45 nS in the other. In the RE-TC system we §&kpa ready activated. Therefore, no significant change occurs in
=0.2 nS in one contact anghyp»=0.18 nS in the other. this neuron. On the other hand, the second neuron is in a
state where only the inwarl, current is active. So any ex-

A. CPG system citatory input depolarizes the cell to a point whdrg, is
activated and a burst begins. This allows the second neuron
to “catch up” with the other neuron. This phenomenon only

To indicate the range of circuit responses that result fromhappens for a range of,. A second example of this is
the incidence of a short sequence of spikes arriving at oushown in the bottom panel of Fig. 4 when the neural circuit
CPG circuit, we show in Fig4 a series of spike sequences receives a spike train witfi,=180 ms.
with differing T, and also show the result of their action on  In-phase bursting can be switched to out-of-phase burst-
the circuits. The circuit begins in out-of-phase oscillations. Aing by stimulating the circuit at differenft,. This is seen in
spike train ofNg=6 pulses withT,=150 ms switches the the parts of Fig. 4 wher€, is 71 ms and then where it is 125
circuit to in-phase oscillations. Shortly after that a sequencens and by introducing nonsymmetric external excitatory in-
of Ng=15 pulses withT,=71 ms arrives and switches the put to both neurons. The maximal excitatory conductivity at
circuit back to out-of-phase oscillations. While in that out- one of the neurons is 50 nS and 45 nS to the other one. For
of-phase state a sequence of;=5 pulses with T,  eachT, one of the neurons gets activated a little bit earlier
=180 ms moves the circuit back to in-phase oscillationsthan the other one, generating a small delay between them.
Finally a sequence dfs=8 pulses withT,=125 ms returns  This delay is sufficient to break the symmetry and transfer
the system to out-of- phase oscnlatlons Each spike sequentke dynamics to out-of-phase oscillations.
lasts order 61 s and the switching is typically done by the  In Fig. 5 we look at this switching capability in a different
time two to five spikes have been received. way. We set the electric conductangg.=6 nS. This is in

We note three essential features of these calculatiofiy: the region of bistable oscillations. We plot the ratio of ob-
Inputs of different frequency T}, can switch the behavior served time lag between the oscillations of the CPG neurons
from in phase to out of phase and vice ver@g;the circuit  to T, as a function off ,. Figure §a) shows this for circuits
remains in the state of oscillation selected by the spike traithat are out-of-phase when the spike train arrives and Fig.
with timing T, after the termination of the input; ariii ) the ~ 5(b) shows this for circuits that are in phase when the spike
switching can be quite rapid, so the information in the spiketrain arrives. When the system is in phase as the spike train
train is quickly transferred by the bistable circuit. arrives, as seen in Fig.(, we see that for 62 nssT,

The first train of spike inputs wit ;=150 ms shown in <74 ms the system switches to out-of-phase oscillations.
Fig. 4 switches the bursts from out-of-phase behavior to inThen, for a broad range df, it remains in phase; for another
phase oscillation. At the onset of the spike train one of theange of T, 105 ms<T <142 ms, it switches again. Fi-
neurons is not affected by the excitatory input because it is imally, for T,>142 ms no switching occurs; the system starts

Membrane Potential (mV)

Voltage 1

T T
Tp=1 25 ms i Yolta e2

Membrane Potential (mV)
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FIG. 4. Time series showing the effect b s of the periodic

1. Precise timing of spike inputs
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FIG. 7. (Time lag between bursi¥, as a function of the dura-

we see that for a wide range @f, a circuit starting out of phase tjon of the input for the CPG circuit witlyee=6 nS andgeaga,

stays that way. When 142 rssT ;<180 ms switching to in-phase

(zero time lag oscillations occurs.

=20 nS, when the circuit starts witfe) out of phase withT
=100 ms, (b) out of phase withT,=160 ms, (c) in phase with
T,=130 ms, andd) in phase withT,=160 ms.

in phase and stays in phase. Similarly, if we begin with out-

of-phase oscillations when the spike train arrives, we see ievant examples. In Fig. 6 we can see four cases for a given
Fig. 5@ broad regions where the out-of-phase behavior perperiod T, of the input. The phase lag versus the strength of
sists and then for 142 msT <180 ms the spike train the input is plotted. One general observation is displayed:

switches the oscillations to in-phase behavior. Foy

The variability of the time lag does not depend as sensitively

=180 ms there is some indication of out-of-phase persisen the strength of the input as on the period of the input.
tence again. In each case reported here the duration of théonetheless, in Fig. 6 we can see a small region where,

spike train was about 1 s. This medig~1 s/T, total spikes

were received by the circuits.
We have studied the variability as a function of one pa-mentary effect can be observed in Figdbwhere, starting
rameter(the period of the inpaf however, it is natural to ask from in-phase initial conditions, out-of-phase behavior is
what effect the rest of the input parameters have, in particureached. One conclusion is drawn from this figure: If we
lar, the strength of the synaptic input and the duration of thevant the system behavior to change rapidly, the frequency of
input. We selected four different regions of switching as rel-the input is the best parameter to be chosen. In Fig. 7 we plot

04 —— —
o - A
o
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& .
E’ 0.2 | ‘ - B
2ot} 1 ‘ ]
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FIG. 6. (Time lag between bursid, as a function of the
strength of the input for the CPG circuit withe=6 NS and
9casa, =20 nS, when the circuit stari@) out of phase withT,
=100 ms, (b) out of phase withT,=160 ms, (c) in phase with

T,=130 ms, andd) in phase withT,=160 ms.

starting from out-of-phase initial conditions and
=100 ms, in-phase behavior can be achieved. A comple-

the variation of the phase lag as a function of the duration of
the input. We can see that from a particular critical value of
the input window(stimulus length there are no changes in
the phase lag, which means that if we want to change the
state of the system from in-phase to out-of-phase behavior
we need a train of 1.5 s, while if we want to transfer the
system to out of phase a shorter time of 0.4 s is required.

2. Jitter in the spike inputs

To distinguish among these regions of attractor switching,
we examined the structural stability of each in the presence
of jitter in the timing of the pulses in the incoming spike
train. We altered the times at which neurotransmitter release
initiates a spike by adding a small random variationt,to

ty=nT,+To+Ata(t).

Again o(t) is Gaussian white noise with standard deviation
unity andAt is the scale of the allowed timing jitter.

In Fig. 8 we present some results of the effect of timing
jitter on the switching ability of our circuits. First, in Fig.
8(a) we start with out-of-phase oscillations and allow a spike
train with T,=160 ms to arrive at the CPG circuit. Kt
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FIG. 8. (a) Ratio of time lag toT, as a function of the magni-
tude At of time jitter when we start with out-of-phase initial con-
ditions and the spike train hds,=160 ms. When\t=0, this situ-
ation results in a switch to in-phagéme lag zer¢ oscillations from
out-of-phase motiongb) Time series forT,=160 ms with a jitter

observed with jittery spike trains is seen in FigbB where
starting from out-of-phase oscillations a spike train with
=160 ms arrives but withAt=20 ms. The system still
switches as it would werdt=0.

When we investigate the ability of the system to switch
from an initial in-phase state to out-of-phase motion with
jitter present, the situation changes. In Fi¢c)8ve show the
result of starting in phase and applying a spike train with
T,=125 ms. IfAt=0, this would switch the state to out of
phase. A sample of the time series observed with jittery spike
trains is seen in Fig.(@). Now we see that the whole regime
is strongly dependent on the magnitude of the jitter. The
apparent lack of robustness of in-phase to out-of-phase
switching led us to investigate the possibility of delivering
the input spike train to the circuits in a nonsymmetric fashion
and we take this up below.

B. Thalamocortical system

Using the same excitatory AMPA couplings now applied
to the two TC neurons in the thalamocortical cirdsiée Fig.
1(b)] we again investigate the dependence of attractor

of At=20 ms. This shows the robustness in switching state despitgwitching onT,. Figure 9 shows the response of the
considerable jitter. (c) Ratio of time lag to period as a function of thalamocorticalpcircuit to these external stimuli when the

the magnitude oAt when we start with in-phase conditions and the
spike train had,=125 ms. Whenm\t=0 this situation results in a
switch to out-of-phase oscillations from in-phase oscillatidiof.
Time series showing switching with 3-ms jitter afig=125 ms.

maximal conductanchABAA places the circuit in the region
of bistability: ggaga,=80NnS. See Fig. @). For T,
=170 ms andl',=200 ms we see that in-phase oscillations
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FIG. 10. (Time lag between bursi¥, as a function ofT, for
the RE-TC circuit withggasa, =80 nS. This is in the region of FIG. 11. (Time lag between bursid, in the RE-TC circuit as a
bistability. We show this time lag t®, ratio when the circuit starts function of T, for four different strengths of the couplinga)
with (a) out-of-phase oscillations arth) in-phase oscillations. 9ampa=0.175uS, (b) gaupa=0.15uS, (€) Gampa=0.225uS,
and (d) gampa=0.25uS. Changing the maximal conductance of
remain in phase. WheR, is changed to 125 ms, the in-phase the input AMPA synapses shifts the regions of in-phase and out-of-
behavior is switched to out-of-phase oscillations. In turnphase oscillations, but the width of these regions is maintained.
these out-of-phase motions are switched back to in-phase

oscillations When a spike train with,= 1SQ ms arrives. As  §yctance of the input AMPA synapséamplitude of stimu-
before, approximatgl1 s ofinput was applied in each case. |atio). Figure 11 presents the results of this simulation for

Again we present another look at this switching ability by o;_of-phase initial oscillations in the RE-TC circuit. We
examining what happens first to an out-of-phase oscillatioy,ng that decrease of the maximal conductafsee Figs.
when a spike train of spacinfy, perturbs it and then ask the 11(g) and 11b)] shifts the boundaries between in-phase and
same when the splke_ train perturbg an in-phase _O_SC'”at'O'but-of-phase modes of oscillations to the righawer fre-

The upper panel of Fig. 10 summarizes the capability of ougy encie, while increase of the amplitude of stimulation
excitatory spike trains to switch from initially out-of-phase ghjfts them to the lefthigher frequencigsAt the same time,
motions to in-phase motions as a functionTgf, while the  the width of the regions where out-of-phase and in-phase
lower panel shows the switching capability from an initially oscijliations were observed is almost unchanged relative to
in-phase motion to out-of-phase oscillations Bs varies.  the amplitude of stimulationcompare Figs. 10 and LIThis

The time series in Fig. 9 are examples of these switchingesylt indicates that the strength of the input AMPA synapses
capabilities. o is the important parameter controlling stimulus-dependent

In qualitative terms the phenomena we see in Fig. 10 cagscillations in the RE-TC circuit. The change of the maximal
be described by the following. The incoming spike train conductance for these synapses., as the concentration of
evokes EPSPs in the thalamic relay cells. The small EPSEyme neuromodulators is changenay shift the frequency
that occurs soon after a burst discharge does not affect theyng where the RE-TC circuit is switched from one oscilla-
TC cell behavior because the inactivation of the low-iory mode to another one. We did not examine the robustness
threshold C&" currentl; prevents LTS generation. The hy- t spike jitter of the detailed results summarized in Fig. 10
perpolarization of the TC cell deinactivates the current  for the RE-TC circuits.
and the later EPSPs evoke depolarization that results in the
LTS. When TC cells oscillate out of phase, the excitatory
input changes the behavior of one of the cells and does not
influence the behavior of the other. Therefore, the phases of In this paper we have investigated two simple neural cir-
the oscillations are shifted and the TC cells are locked in a&uits coming from two diverse sources. One is a neuron
regime of in-phase oscillations. Such a mechanism works focouple connected reciprocally by a gap junction and by in-
specific frequencies only. For higher-frequency stimulatiorhibitory GABA, synapses. It is intended to model a pair of
the time delays between EPSPs is not long enough to deimeurons found in the Pyloric CPG of the California spiny
activate thel; current and TC cells show a burst dischargelobster, though removed from synaptic connection with the
for each second EPSP. This results in their out-of-phase osemainder of the CPG neurons. The second is a circuit con-
cillations. sisting of coupled pairs of thalamocortical relay and thalamic

Again we are able to conclude that the three essentialketicular cells with both inhibitory GABA and GABAg cou-
features observed in the driven CPG circuit are repeatedlings as well as AMPA excitatory connections. The com-
here: switching, persistence of the switched state after themon feature of the two circuits is that they have a balancing
spike train phases, and rapid switching caused by just a fewf influences among their constituent neurons coming from a
spikes. The dependence of these effects on the parametersaaimbination of strong direct couplings, inhibitory couplings,
stimulation was investigated by varying the maximal con-and excitatory couplings. This balance leads in each basic

IV. DISCUSSION
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spike intervalT,. We took spike trains of total length about

1 s over a range 50 msT,<250 ms. Our primary question
was whether over broad rangesTqf such a short spike train
could reset the oscillations of the circuits from one behavior,
say in phase, to the other, say out-of-phase, and if so to
investigate how robust this resetting would be to noise in the
circuit conductances and to error or jitter in the precision of
T

50

Vmv)

-50

We showed that the short spike train could reset the os-
cillators over broad values of, in a range of substantial
biological interest and, strikingly, we found that the reset,
when it occurred, happened in the course of reception of just
40 a few spikes. Long, persistent chains of spikes were not re-
e , 2 quired for the reset. Clearly the spike train acts as a ‘“reset
L (pAjem™) button” for the initial conditions of the coupled neural oscil-

FIG. 12. State space portrait of the two coexisting attractors forlatOrS pushing the new initial conditions in the other basin of

the RE-TC system. The solid line is the orbit[i(t). ~(t).I ()] attraction when reset occurs and leaving it in the original

space of the in-phase oscillations. The dotted line is the path takeE)aSIn when reset does not occur. It seems of potential bio-

in the same state space by the out-of-phase oscillations. The clos gical importance tha,t reset happens at SOTBea”d not

ness of the two attractors leads to the ease with which spike train3tN€rs, that reset from in phase to out of phase happens more

with appropriateT, can induce transitions between them. The easily when a time lag or phase difference is present between

GABA, conductances between the RE cells was set at the valu1® tWo incoming excitatory AMPA inputs, and that there is

100 nS for each of the state space trajectories in this figure. One cah distinct robustness to the reset capability against noise in

see from Fig. 3 that this places the system in the region of bistabiltheé synaptic conductances and in the precisiofi pf

ity. Two potential uses may be made of the reset capability of
bistable circuits. First, in lobster CPG circuits it is known

circuit to at least one region in their parameter space wherf1at neuromodulators can alter the character of neural oscil-
bistability and hysteresis occurs. Balanced circuits with mordations in accordance with selected functional behajAdr
complex connectivity among simpler neural elements havd e reset capability of sensory spike trains may also be used
been investigated for their potential role in generating chal® achieve this goal. Second, this reset capability may be a
otic responses to external inpl4]. way in which neurons interpret information coming f_rom
Bistability occurs when there are two distinct solutions toS€NSOry sources and reformat it for use further along in the
the conductance based differential equations describing tHahimals processing and decision system. If this “learning”
circuit that coexist over a range of settings of the variougunction is correct, the mechanism could potentially be use-
parameters in the equations. In this work we explored gul in short term memory where more complex circuitry
range of electrical couplings over which the CPG circuit hadould be reset for such a purpose. _ _
two distinct solutions and we investigated a range of GABA _ 'N€ results here also serve as a setting for experimenta-
coupling over which the RE-TC cells act in the same fashiontion [25], especially on the CPG circuit where a couple es-
In the state space of the systems we see two distinct orbits &enually '|dent|cal to our moidel circuit can be identified and
phase portraits for the two solution sets. These represent twg°lated in the lobster Pyloric CPG. The results also suggest
distinct attractors for the dissipative neural dynamics.Puilding a nonlinear circuit modgl26] of the neurons and
Whether after initial transient behavior the circuit ends up oril€Ir connections to investigate in a more systematic fashion
one attractor or another depends on the initial conditions fof€9i0ns of bi- and multistability and ranges of variation of
the solution of the differential equations. In state space eachoUPlings and interspike intervals than is possible in soft-

attractor has a set of initial conditions that bring the solutionVaré explorations. _ o
to it and this collection of initial conditions is called its basin ~ Finally, as a suggestive model for biomimetic uses, one

of attraction. Figure 12 shows the two attractors for the®@n view these circuits as sensitive sensors of short pulses of
RE-TC system in the same state space. As one can see, thignals with different frequency and phase. Both software
two attractors are quite close in this space, supporting thend hardware investigations of thg range.of usable sensitivity
fact that transitions between them can be easily induced b§f Such a sensor would be quite interesting.

the periodic spike trains we introduce.
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APPENDIX —leasa,[Vj(1),t] = Tex(t). (AS5)

The general format for conductance models that are th

ordinary differential equations of Hodgkin-Huxley typ#4] ?GABAA[VJ(t)'t.] IS the. inhibitory cor.m.ectlon refle(.:t|r.19- the
is current seen in neuronfrom the activity of neurorj; it is

described belowl ., is the external perturbation from spike
trains injected through AMPA connections and is also de-

N
M: _gL[V'(t)_EL]_E L[Vi(t),t] scribed below.l 4 is a hyperpolarizing dc current injected
modt ' = into each neuron. We tooky=0.16 nA in our computa-
Neyn tions.C,=0.33 nF.
The sodium current has the form
= 2 1TV~ Gaes V(D= Vi(D],

Ind V(D) t]=gnam()*h(D[V() —Enal,  (AB)

with gna=70 uS andEy,=50 mV. In addition, for this cur-
whereV(t) is the membrane potential of thh cell andC,,  'ent we have

(A1)

is the membrane capacitangg. is the leakage conductance _ n N
and E, its reverse membrane potentigl,. is the conduc- M..(V) =141 +exd (~V=25.5/5.29]},
tance of the electrical coupling. All intrinsic ionic currents h.(V)=1A1+exd (V+48.9/5.18]}
I;[V(t),t] have the general form - '
Tm(V)=1.32-1.26f1+exd (—120-V)/25]}, (A7)
LIV, t]=g;m(t)Ph(t) V(D) - E], (A2)
h(V)=0.6%1+exd (—62.9-V)/10]}
where g; is the maximal conductancen(t) represents the X (1.5+ 141 +exf (V+34.9/3.6]}).
activation of the ionic channels arfi{t) the inactivation.
m(t) andh(t) are dimensionless and lie in the intery@J1]. The persistent sodium current was taken to be
E; is the reversal potential for curreht. The time depen- 3
dence ofm(t) andh(t) are each assumed to be given as Tp N V(1),t]=0p nam(1)“N(D[V(D) —Ep na],  (A8)
dm) whereg, na=3 1S andE, y,=50 mV. In addition, for this
m(t current we have
Tm(V)szx(V)_m(t) (A3)
m..(V)=1f1+exd (—V—26.9/8.2]},
and h..(V)=1/(1+ exp(V+48.5/4.8W),
(A9)
dh(t) m(V)=19.8-10.7f1+exd (— 26.5-V)/8.6]},
(V) —gr=N=(V) = hv), (A4) )
(V) =666—37941+exd (—33.6-V)/11.7]}.
wherem,.(V), h.(V), 7m(V), and7,(V) are nonlinear func- We used the calcium current
tions of V extracted from experimental recordings of ionic 3
currents. Unless otherwise stated, the time unitsrfpand led V(D). t]=gcam(t)°h(D[V(t) —Eca,  (A10)

7, are millisecondsl$*TV;(t),t] is the current into neuron

coming from neuror] through a synaptic connection. where gcg=6 1S andEc,=120 mV. In addition, for this

current we have

1. Stomatogastric circuit mM..(V)=1{1+exd (-V-27.1/7.18]},
The model stomatogastric neuron is mainly based on h..(V) = 141+ exd (V+30.1/5.5]},
[27,28. For each cell in the circuit we include a sodium (A11)
currentl y,, a persistent sodium currehf v,, a high thresh- (V) =30.7-21.3[1+ exq (— 68.1- V)/20.5]},
old calcium current,, a calcium-dependent potassium cur-
rentlgcqy, @ delayed-rectifier potassium curregt, a low (V) =105-89.8{1+ex (— 55— V)/16.9]}.

thresholdl,, current, and a leakage curreint. The voltage
time dependence for either neuron in the circuit is given by  For the calcium dependent potassium current we took
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Ikcal V(1) t]= gk camM(D V() —Excal, (A12)

wheregycy=18.5uS andEgc,=80 mV. In addition, for
this current we have
m..(V,[Cal) = ([Cal/([Ca]+3))

x{1+exd(—V—28.3/12.6]},

(A13)
(V) =90.3— 75.14 1+ exyf (— 46— V)/22.7]}.

The time dependence of the calcium concentration is taken to

satisfy the simplified kinematics

d[Cal(t)

= Al V.t -BlCa(D+C,

(A14)

whereA=100 rM/(nA ms),B=5 ms !, and the resting cal-
cium concentration i€ =50 nM/ms. This is a simplification
of the intracellular calcium dynamid9], but for the pur-
poses of this paper, it provides an adequate representation
the influence on calcium on this channel.

The delayed rectifier-potassium current was modeled as

Ikl V(1),t]=gxam(t) V(1) — Exql,

where gxq=20 uS andEyxy=80 mV. In addition, for this
current we have

(A15)

m..(V)=141+exq (- V—12.3/11.8]},
(A16)

Tm(V)=7.2-6.41+exd (—28.3-V)/19.2]}.
Finally, the low threshold current was taken to be
Ih[V(1),t]=gnm(t)[V(t) — Ep],

where g,=0.08 uS andE;=20 mV. In addition, for this
current we have

(A17)

m,.(V)=1f1+exd (V+78.3/6.5]},

(A18)
(V) = 272+ 1499f 1+ exyf (— 42.2—V)/8.73]}.

For the leakage current we se =0.008uS and E_
=65 mV.
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dVge(t)
mg—ltz(:_QL[VRE(t)—EL]_|Na[VRE(t)-t]
— k[ Vre(t),t] = I1  ~lcaBa, ~ lamPa .
(A19)
dVre(t)
m;—::_gL[VTC(t)_EL]_INa[VTC(t)at]

— k[ Vi) t] =l ~Th—lcaea,
—lcasag —lext(t)-

We used C,,=0.143 nF (area 1.4%X10 % cn?), g,
=7.15 nS, andE, =—-80 mV for the RE cell [22]
and C,,=0.29 nF (area 2.X10 * cn?), g, =2.9 nS,E,
—70 mV, gkL=6.4 nS, andExL=—95 mV for the TC
cells[34]. | (t) is the external AMPA synaptic current dis-
cussed in the text. In one AMPA connection we tomk,
=0.2 nS and in the otheag.,=0.18 nS.
of The sodium current for the RE cells has the form

Ind V(1),t]= gnem(t) *h(H)[ V(1) — Enal,

with gna=14 S andEy,=50 mV, while for the TC cells
we write

(A20)

Ind V(1),t]=gnaM(t) (D[ V(D) —Enal,  (A21)

with the same reversal potential as for RE cells but,
=26.1uS. In addition, for both cells we have

M. (V)= an(V)/[an(V)+ Bn(V)],
h..(V) = an(V)/[an(V)+ Br(V)],
(A22)
Tm(V) =W an(V) +Bn(V) ],
Th(V) =1 an(V)+Br(V)],
where

am(V)=0.3713-0v2(V)](exp{[13—v2(V)]/4 - 1)1,

Bm(V)=0.28v2(V)—40](exp{[v2(V)—40]/5} —1) "1,

Inhibitory synaptic transmission was modeled using the

form of GABA, synaptic currents developed for vertebrate
neurons. These are described bel@8].

2. Thalamocortical circuit

The thalamocortical circuit consists of pairs of TC and
thalamic RE neurons connected as shown in Fig).1For
each RE and TC cell we included a fast sodium curtgt
a fast potassium currem [31], a low-threshold C& cur-
rent I [32,33,20, and a potassium leak curreri
=gk (V—Vk). A hyperpolarization-activated cation cur-
rentl, [18,32 and the external AMPA injectioh,,{t) were

also taken into account for the TC cells. The synaptic con-

nections via GABA and GABAg inhibition as described
below and shown in Fig.(b) are also included. The mem-

an(V)=0.128 exp[17—v2(V)]/18},
Br(V)=4l(exp{[40—v2(V)]/5} +1),
v2(V)=V—(—50).
The potassium currenf, was modeled as
V(D) t]=gkm(D) T V(1) — Ex],
with gx=1.43 uS andEx= —95 mn for the RE cells, and

I [V(D),t]=gem(t) [ V(1) —E],

with the saméey as for the RE cells andx=2.9 1S for the

(A23)

(A24)

brane potentials of the neurons are governed by the equatio€ cells. In addition, for these currents we have
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M (V)= am(V)/[am(V)+ Bm(V) ], pp=3.58Tc 2910 ¢ =3(Tc=2410  (A32)

Tm(V) =W an(V)+Bn(V)], with Tc=36 °C.
Finally, we model thd, current for the TC cell as
am(V)=0.03215-0v2(V)](exp{[15—v2(V)]/5 - 1)1,

(A25) W[V, 1]= gum(DV(D) — Eq], (A33)

Bm(V)=0.5 exd[10—v2(V)]/40},
whereg,=5.8 nS ande;,= —40 mV. In addition, we have
v2(V)=V—(—50). for this current

ThelTRE current for the RE cell was taken to be m.(V) = {1+ exd (V+75)/5.5]},

I V(D). =gr m(t?h(D[V(H) ~Er ], (A26)

Tm(V)=(20+ 10004 exd (V+71.5/14.2]
wheregr__=0.25uS andE+__depends on the Ga concen-
RE RE

tration inside([Cal]) and outside [(Cal,) the cell. These are +exd —(V+89/11.6]})/ ¢, (A34)
defined by the Nerst equation

RT ¢m:3(TC_24)/101

Erpe= 52 NCAlCalo), (A27)

with Tc=36 °C. For both RE and TC cells the calcium dy-

where R=8.31441T=309.15F=96489, and [Cal, hamics is described by a simple mo@20]
=2mM.

In addition, we have for this current d[Ca]
—gr = ALV, 1 -Ke Cal([Cal+Ky),
m,,(V)=1{1+exd — (V+52)/7.4]},
Tm(V)=(3+ 14 exd (V+27)/10] where A=0.362 nM/msuA for the RE cel, A
=0.179 mM/ms pA for the TC cell, T=mM/ms, andKy
+exd —(V+102/15]})/ ¢, =0.0001 nM [35].
(A28)

h.(V) =11+ exd (V+80)/5]}, 3. Synaptic couplings
h(V)=(85+ 1 exd (V+48)/4] The GABA, and AMPA synaptic currents were modeled
by a first-order activation schenisee the review if36)).
+exg — (V+407/501})/ ¢y, - The current was given by

We have defined the quantities,, and ¢, as
lsyd V(1) t]=ggd O1([V(t) — Egynl,
m= ¢h: 2.5Tc—24)/10’ (Azg)
wheregs,, is the maximal conductivity anBsy, is the rever-
sal potential. For AMPA receptor&,,,=0mV and for
GABA, receptorsEg = —80 mV. [O](t) is the fraction of
open channels

with Tc=36 °C.
ThelTTC current is taken to be

I, V(8 t]=gr, MO?h(O[V()—Er, ], (A30)

= i - d[O](t
where O7;c 0.87uS and the' re\{ersal potentleETTC de' [d]( )=a{l—[O](t)}[T](t)—B[O](t)
pends on the G4 concentration in the same way as just t
noted for the RE cell. In addition, we have for this current

and[T](t) is the concentration of transmitter released from
M.(V)=1{1+exd — (V+59/6.2]}, time t to time t,ay,

(V)= (14exd —(V+131.6/16.7]

[TI()=Ab(tmax—1) O(1),
+exd (V+ 16.8)/18.2]}+0.613/¢m,

(A31)  whered(x) is the Heaviside function.
The synaptic parameter values used in the storlnatogastric
model were chosen a&=1,t,,,=9 ms,a=0.5 ms -, and
(V)= (30.8+{211.4+ ex (V+115.2/5]} B=0.2 ms! for excitatory (AMPA) input synapses and
X {1+ ex (V+86)/3.2]} 1)/ ¢y, =1,tpa=3 ms,a=0.5ms !, and 8=0.8 ms?! for inhibi-
tory (GABA,) interconnecting synapses. The strength of the
We have defined the quantities,, and ¢, as external forcing and the inhibitory coupling amavpa

h..(V) =141+ exd (V+83)/4]},
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=50 nS andggapa,=20 nS throughout all the numerical [G]*
integrations. The strength of electrical coupligge ranges IGABAB[V(t)’t]_gGABAB[G]“Jr Kd[v(t)_Ek]’
from 0 nS to 20 nS.
The synaptic parameter values used in the thalamocortical
model areA=0.5 andt,,,,=0.3 ms and the rate constants d[RI(t) =K {1-[RIOYTID) —K,[R](1), (A35)
were chosen aa=5 ms andB=0.166 ms for GABA, syn- dt ! 2 '
apses andv=0.94 ms ang3=0.18 ms for AMPA synapses.
The strength of the external forcing @ggpa=0.2 #S. The d[G](t)
strength of GABA, synapses from RE to TC cells is 4
Jeasa,= 0.2 uS and the coupling between RE cells was var- dt
ied from 0 and 0.24S. The maximal conductance of AMPA
synapses igaypa=0.8 uS. where [R](t) is the fraction of activated receptors and
GABAg receptors were described by a more complex acf G](t) is the concentration db proteins. In these equations
tivation scheme taking into account the activation of K we choseK;=0.52, K,=0.0013, K;=0.098, K,=0.033,
channels by G proteins5,22 andKy=100. ggapa, = 0.05 uS.

=K3[R](t) — K [ G](1),
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