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In the mushroom body of insects, odors are represented by very few spikes in a small number of neurons, a highly efficient

strategy known as sparse coding. Physiological studies of these neurons have shown that sparseness is maintained across

thousand-fold changes in odor concentration. Using a realistic computational model, we propose that sparseness in the olfactory

system is regulated by adaptive feedforward inhibition. When odor concentration changes, feedforward inhibition modulates the

duration of the temporal window over which the mushroom body neurons may integrate excitatory presynaptic input. This simple

adaptive mechanism could maintain the sparseness of sensory representations across wide ranges of stimulus conditions.

Our sensory environment is in near constant flux. Brain sensory
systems have evolved the means to adjust their coding properties to
adapt to constantly changing signals arising in sensory neurons. Ideally,
a coding strategy used by a sensory system should provide efficient
representations across the full possible range of stimulation conditions.
For the olfactory system, this task involves the encoding of odor
intensities, an ability that is critical in many species for survival.
Psychophysics studies have shown that, across great ranges of concen-
trations, odors can be perceived as arising from the same chemical1,2,
and yet, human and animal subjects can distinguish their concentra-
tions as well. Odor representations in the olfactory system have
been shown to remain sparse and specific over thousand-fold
changes in odor concentration3, a property that is potentially useful
for storing and retrieving memories4–6. Given these variations in
input, the method by which neural circuits of the olfactory system
regulate sensory input to maintain stable odor representations
remains a mystery.

In the antennal lobe, the first relay in the insect olfactory system,
odor identity and concentration are encoded by spatiotemporal pat-
terns of activity in populations of projection neurons4,7,8. These
patterns include the oscillatory synchronization of evolving subsets
of projection neurons. This information is then transferred to the
mushroom body, a structure analogous to the olfactory cortex. In the
locust, recordings made in vivo from the Kenyon cells, the principal
neurons of the mushroom body, demonstrate remarkable odor speci-
ficity9. It has been proposed that the intrinsic and synaptic properties of
the Kenyon cell circuitry combine to generate relatively brief integra-
tion windows in the Kenyon cells, thus causing them to operate as
coincidence detectors that are sensitive to their synchronous inputs9,10.
Notably, recordings made in vivo show that the synchrony of the input
from the antennal lobe to the mushroom body increases markedly as
odor concentration increases3. One could predict that this increase in

coherence should overwhelm the coincidence detection process, lead-
ing to a breakdown in the sparseness of odor representations in the
mushroom body as odor concentrations increase. Yet, physiological
recordings from Kenyon cells show that their sparse firing is preserved
throughout wide ranges in odor concentration3. How is sparse coding
maintained in the face of this great variance in input intensity?

Feedforward inhibition can effectively regulate the temporal integra-
tion properties of neurons11,12. In the locust olfactory system, one form
of feedforward inhibition consists of competitive interactions between
two inputs to Kenyon cells: one input, provided directly by the
projection neurons of the antennal lobe, is excitatory, whereas the
other, provided indirectly by lateral horn interneurons (LHIs, which
themselves are driven by projection neurons)13, is inhibitory. Feed-
forward inhibition by LHIs faithfully follows, with a delay, the periodic
excitation of Kenyon cells by projection neurons. The alternating cycles
of excitation and inhibition create independent and brief temporal
windows during which Kenyon cells can sum projection neuron input9.
This mechanism contributes toward sparsening odor representations in
the mushroom body9. Here we propose that this mechanism can also
maintain representation sparseness across a broad range of stimulus
intensities. Using computer simulations we show that changes in
projection neuron coherence can modulate the phase of feedforward
inhibition to Kenyon cells, and thus adjust their window of integration
for projection neuron output. In general, this simple adaptive mechan-
ism may be useful for maintaining sparseness of sensory representa-
tions across wide ranges of stimulus conditions.

RESULTS

Encoding odor identity and concentration in the antennal lobe

Odor detection begins when odorant molecules bind to olfactory
receptors, initiating a second messenger cascade that leads to the
opening of ion channels, the depolarization (usually) of the receptor
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neuron cell membrane14 and the generation of action potentials.
Because each receptor type responds preferentially to certain odorants,
the representation of each odor can be described as a spectrum of
activation patterns across the receptor population. As odor concentra-
tion increases, less specific receptors become active, leading to broader
activity spectra15–17.

The locust antennal lobe (analogous to the olfactory bulb in
mammals) consists of B830 excitatory projection neurons and 300
inhibitory local neurons, and receives convergent input from B90,000
olfactory receptor neurons18 (Fig. 1). In the antennal lobe, receptor
neurons appear to synapse onto both projection and local neurons19.
Local neurons arborize extensively in the antennal lobe, contacting
and coordinating large numbers of projection and local neurons20.
Odor-driven interaction between the excitatory output of receptors and
projection neurons, and the inhibitory feedback from local neurons

generates a periodic (B20 Hz) projection neuron output7,21. To study
and simulate this system, we generated a scaled-down model of the
antennal lobe consisting of a randomly connected network of 300
projection neurons and 100 local neurons. The connection probability
between all pairs of neurons (except projection neuron–projection
neuron connections) was set to 0.5; no connections have been observed
among projection neurons in the locust (see Methods for a complete
description of the model architecture). Odor-evoked oscillatory
dynamics could be measured as the mean membrane potential across
all projection neurons. As observed in vivo17, the projection neurons
whose spikes were phase locked to the oscillatory local field potential
(LFP) changed from cycle to cycle.

Using our model, we sought to understand how changes in odor
concentration would affect the sparseness of odor representation by
downstream areas. We modeled each odor pulse as a continuous and
constant (except for low-amplitude additive noise: B5–10% of the
stimulus amplitude) depolarizing input to an odor-specific subset of
antennal lobe neurons22,23. We emulated the effect of increasing
concentration by enlarging the set of activated projection and local
neurons (s, Fig. 2a). Projection neuron oscillatory frequency, as
observed in vivo3,7,21, held steady at B20 Hz across the range of

Figure 2 Oscillatory dynamics of antennal lobe

neurons for different odor concentrations. (a) For

a particular odor, the input from the olfactory

receptor neuron array is maximal to some
projection neurons and progressively less to

others. An increase in concentration is

instantiated in the model by recruiting additional

projection neurons. A quantitative measure of

the concentration is the s.d., s, of the input

Gaussians. Three different concentrations used in

the simulations are shown. Different odors may be

simulated by shifting these curves along the

abscissa, with the degree of overlap between

Gaussians indicating the similarity between

modeled odors. (b) LFP oscillation frequency for

different concentrations. Left, mean frequency of

the membrane potential of 300 projection

neurons as a function of concentration ranging

from s ¼ 0.1–0.4. Right, frequency of

the LFP at four concentrations. An increase in

concentration does not cause large variations in

the frequency of the LFP, which remains around
20 Hz. (c) The membrane potential averaged

across 300 projection neurons for different

modeled concentrations. The amplitude of the

oscillations increased with concentration.

The horizontal line shows the time over which

the stimulus was presented (duration ¼ 1 s).

(d) Mean number of spikes in all presynaptic local neurons versus the s.d. in the spike timing of their postsynaptic projection neurons across trials. The s.d. is

computed in terms of the phase of the oscillatory LFP at which a projection neuron fires a spike. Increasing concentration led to an increase in the number of

presynaptic local neuron spikes and a corresponding increase in the reliability of projection neuron spike phase across trials.
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Figure 1 Network structure. (a) The excitatory projection neurons (PN ¼ 300)

and inhibitory local interneurons (LNs ¼ 100) receive input from olfactory

receptor (OR) neurons. The PN-LN and LN-LN connection probability was set

to 0.5. PNs receive feedback inhibition (FBI) from LNs. No connections were

implemented between PNs. The LHIs (100) provide delayed (DT) feedforward

inhibition (FFI) to the Kenyon cells (KCs ¼ 15,000). (b) A detailed view of

projections from PNs to the mushroom body (MB). The PNs project to the

mushroom body along two pathways: a monosynaptic direct connection and
a disynaptic pathway via the LHIs. The PN-LHI and the LHI-KC

connections are all to all. Approximately 100 PNs synapse onto each KC.
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concentrations tested (Fig. 2b). However, the amplitude of the
simulated LFP (again, as observed in vivo20) increased with odor
concentration (Fig. 2c), reflecting, primarily, an increase in projection
neuron coherence. The amplitude was also augmented by the recruit-
ment of additional projection neurons (Fig. 2a). The mean number
of highly active neurons (that is, neurons producing more than 10
spikes per 1-s trial) increased over the range of simulated concentra-
tions (s ¼ 0.1–0.4), but only by 13%. Further, the number of spikes
produced by active neurons decreased from B25 spikes per simulated
trial to B20 spikes.

To elucidate the role of inhibitory feedback24 on the concentration-
dependent phase locking of projection neurons, we measured the
model’s total local neuron output to selected projection neurons (the
number of Ca2+ spikes produced by local neurons presynaptic to a
particular projection neuron at each cycle of LFP oscillations over the
period between two LFP maxima). This inhibitory input increased, on
average, as a function of odor concentration (abscissa, Fig. 2d).
As feedback inhibition increased, the timing precision of projection
neuron spikes across trials also increased; jitter of projection
neuron spikes decreased (ordinate, Fig. 2d). Thus, projection neuron
synchrony in our model is adaptively shaped by inhibition and
concentration-dependent feedback from local neurons (Fig. 2d).
However, the increase of inhibition with odor concentration did not
substantially change the frequency of LFP oscillations. We found
that an increase in inhibition beyond a certain level only produced
an asymptotically small frequency change. Oscillation frequency
remained stabilized at a level determined almost entirely by the
decay-time constant of inhibition (for complete analysis see Fig. 2c
in ref. 23).

Intracellular recordings from individual projection neurons reveal a
variety of odor–elicited firing patterns that are, when seen one projec-
tion neuron at a time, poor predictors of the identity or concentration
of an odor3. Information about identity and concentration, however,
can be found when the analysis is carried out over populations of
projection neurons3 in a manner consistent with the way Kenyon cells

read projection neuron output25. We thus sought to examine the
coding of odor concentration across the model’s population of projec-
tion neurons. We analyzed projection neuron activity as time series of
consecutive 300-dimensional vectors (Pi(j), i ¼ 1,y,300; j ¼ 1,y,N,
where N is the total number of consecutive time bins). The space
defined by the vectors was reduced by principal component analysis
and the population responses to odors were visualized as trajectories
projected onto the first three principal components (Fig. 3a). These
trajectories, like those calculated for firing patterns recorded in vivo3,26,
emerged from baseline (B, Fig. 3a), and after a fast transient
response, settled into a quasi–steady state. Following odor offset, the
projection neuron vectors returned to baseline along a different
path. Consistent with experimental recordings3,26, trajectories corre-
sponding to different odors diverged in the first few cycles of
LFP oscillations, and different concentrations of an odor evoked
neighboring trajectories (Fig. 3a, right). The quasi–steady state
segments of each trajectory were arranged contiguously by concentra-
tion, and thus defined odor-specific manifolds in the space of
projection neuron activity (Fig. 3a, left). Thus, the output of the
model’s antennal lobe matches qualitatively the experimental results
obtained in vivo3,26.

We further analyzed the relative distances between projection neuron
trajectories. The trajectories embedded in a higher dimensional space
[Pi(1) � Pi(2) �y� Pi(N)] formed clusters that were odor-identity
and concentration specific (Fig. 3b). Across odors, distances between
corresponding concentration clusters increased with increasing con-
centration (Fig. 3b,c, left).

The above results match experimental observations: concentration–
dependent increases in intercluster distances were observed in projec-
tion neuron recordings with three odor pairs, octanol-hexanol,
octanol-geraniol and hexanol-geraniol (i ¼ 225 projection neuron
vectors, 3 odors � 5 concentrations � 15 trials; Fig. 3c, right). Only
when the computed overlap between two simulated odors was
extremely high (more than 95% at high concentrations) did inter-
concentration cluster distances decrease with concentration.

Figure 3 Collective dynamics of neurons in the

modeled antennal lobe. (a) Visualization of the

spatiotemporal dynamics of the 300 model

projection neurons projected onto the first three

principal components (mean over ten odor

presentations, binned using 50-ms windows).

Each trajectory covers 3 s, with the stimulus

presented over 1 s. The trajectories originate from
baseline (B). Different concentrations (s) of the

same odor (shown in different colors) evolved

along neighboring trajectories (left), whereas

different odors evolved along divergent trajectories

(right). (b) Clustering of the spatiotemporal

response patterns of the 300 model projection

neurons for two odors across a range of six

concentrations. Here, each trajectory shown

in a is treated as a single point in a higher-

dimensional space; each point corresponds to the

response of the projection neuron ensemble to an

odor presentation. The points clustered in an

odor- (color) and concentration-dependent (shade)

manner. The spatiotemporal response of the

projection neuron ensemble diverged as a

function of increasing concentration. The high-

dimensional spatiotemporal patterns are projected onto the first three principal components for visualization. Dark color, low concentrations; light color,

high concentrations. (c) The Euclidean distance between odor clusters as a function of odor concentration. Left, in the model, the distance increased for

concentrations from 0.05 to B0.25 and remained nearly constant for higher concentrations (s ¼ 0.25–0.4). Right, experimental data showing an increase in
the distance between odor clusters (averaged for three odor pairs) from 10–3 to 10–1, followed by saturation between 10–1 and 1.
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Decoding olfactory information in the mushroom body

How is this projection neuron spatiotemporal output interpreted by its
follower neurons, the Kenyon cells in the mushroom body? Using the
total spike output of each one of our model 15,000 Kenyon cells, we
created 15,000-dimensional Kenyon cell vectors for each odor presen-
tation. These vectors, constructed for different odors, concentrations
and repeated simulated trials, revealed a distributed odor-identity
and concentration-dependent organization (Fig. 4a) very much like
that seen in experiments; Kenyon cells showed varying degrees of
response selectivity, ranging from very selective (activation by a
specific odor and concentration) to concentration invariant (activation
by all concentrations of a particular odor)
(Fig. 4b). When Kenyon cell firing thresholds
were appropriately specified (see below),
Kenyon cell responses were sparse, with
most of the active (a few hundred out of
15,000) Kenyon cells responding with only
1–3 spikes (Fig. 4c).

Pivotal to the specificity and sparseness
of Kenyon cell responses is the underlying

architecture of the locust olfactory system, characterized by the wide
divergence of connections from projection neurons to Kenyon cells.
Each projection neuron arborizes extensively in the mushroom body,
on average synapsing onto 50 ± 13% of the Kenyon cells25. Conversely,
each Kenyon cell reads input from about 50% of the projection
neurons25 (see also4,27). This widely divergent connectivity appears to
ensure that each Kenyon cell’s projection neuron–input vector is
maximally different, on average, from those of the other Kenyon
cells, provided that their firing thresholds are set appropriately. Kenyon
cells can thus be extremely selective and their responses can be sparse, as
observed experimentally3,9. Of great importance to this sparsening is
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Figure 4 Collective dynamics of neurons in the

modeled mushroom body. (a) Visualization of the

model KC activity projected onto the first three

principal components. Left, KC activity was

computed by adding the number of spikes

produced by each of 15,000 KCs over the stimulus

duration to obtain a 15,000-dimensional vector.

Each point corresponds to one trial of an odor
presentation. The line joins the means of different

concentration (different colors) clusters. Right,

KC activity clustered along different concentration

manifolds for dissimilar odors. (b) Diversity of KC

responses to odor concentrations. Each plotted

point represents an active KC (cells that spike in

more than 50% of the trials). Individual KCs

showed varying degrees of selectivity to different

odor concentrations (dark color, low concentrations;

light color, high concentrations; different colors

correspond to different odors). Some cells spiked

reliably for a wide range of concentrations,

whereas others were responsive to specific odor-

concentration pairs. Each panel consists of 300

randomly selected KCs. (c) Frequency distribution

of KC response intensity (total number of spikes

elicited by a 1-s odor presentation). Most cells

responded with 1–3 spikes.
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Figure 5 PN and LHI responses for different odor

concentrations. (a,b) Top, the activity histogram

and spike raster of PNs (a) and LHIs (b), shown

for two concentrations. The timing of the peak

activity of PNs did not show a clear dependence

on concentration. The timing of peak LHI activity

advanced for higher concentrations and LHI

spiking became more coherent. The amplitude

of LHI activity histograms (top) is rescaled.

Bottom, the peak phase and the variance in the

phase distribution for each concentration are

shown for PNs (a) and LHIs (b). The peak PN
phase did not advance systematically as a

function of increasing concentration; variance of

the PN phase, however, decreased consistently

with increasing concentration. Solid lines show

average network activity.
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the control of Kenyon cell integration of projection neuron input
defined in part by feedforward inhibition from a small population of
interneurons9 (Fig. 1). Because LHIs are driven by periodic input from
projection neurons, their output is also phase-locked, but with a delay
defined by the time for conduction and integration by LHIs9. Thus, the
phase delay between projection neuron and LHI input to Kenyon cells
defines the integration window that is available to Kenyon cells at each
cycle of the oscillatory projection neuron output9. Experiments show
that this delay is distributed around a mean of 1731 (or about 20 ms)9.

Experiments3, reproduced by our simulations here, show that
projection neuron coherence increases with odor concentration.
Kenyon cells are sensitive to input coincidence in each oscillatory
cycle10. Therefore, in the absence of any compensatory mechanisms, a
concentration-driven increase in projection neuron coherence should
lead to an increase in Kenyon cell firing probability28, compromising
the sparseness of odor representations in the mushroom body. How-
ever, experiments show that Kenyon cell responses are consistently
sparse across thousand-fold changes in concentration3. How is this
sparseness maintained? Our simulations revealed a plausible mechan-
ism that relies on adaptive regulation of feedforward inhibition by
LHIs: as concentration, s, increases, projection neuron population

coherence also increases, but without any systematic changes in the
mean timing of projection neuron spikes (Fig. 5a). LHI discharge,
however, changes in two major ways. First, LHI coherence increases,
leading to stronger phasic inhibitory input to Kenyon cells. Second,
LHI mean firing phase advances by up to p/2 radians, reducing the
Kenyon cell integration window, T(s), by up to 10 ms at each
oscillation cycle (dT/ds o 0) (Fig. 5b).

Why does the LHI spike timing advance without a concurrent
change in the peak position of the projection neuron spike distribu-
tion? Each LHI receives input from all projection neurons in the
antennal lobe, with the width of the projection neuron spike distribu-
tion defining the overall strength of input to LHIs. When the distribu-
tion of projection neuron spikes was broad (as elicited by low odor
concentrations), the sum of projection neuron inputs was near the
spiking threshold for many LHIs. Hence, even relatively little variability
in the LHI resting potentials (see Methods) produced a substantial
effect on the spike times. LHIs receiving barely suprathreshold input
produced spikes following a delay, whereas those receiving subthresh-
old input did not spike at all. Thus, the peak of LHI spiking became
delayed relative to the peak of projection neuron spiking, and the LHI
spike distribution was relatively broad. An increase in concentration led
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Figure 6 Effect of adaptive feedforward inhibition

of KC activity. (a) Relationship between the

phase of PN, LHI and KC spikes for different

concentrations (s ¼ 0.2–0.4). Normalized phase

histograms were computed using the phase of the

PN, LHI and KC spikes with respect to the mean

oscillatory membrane potential of the PNs during

an odor presentation. The peak of the LFP

oscillation corresponds to 0 radians; 0.09-radian

bins. Normalization ensures that the area under

the histogram is unity. Each concentric ring

(dotted line) corresponds to a probability of 0.02.

(b) Main peaks of the phase histograms in a. The
phase difference between the excitatory PNs and

the inhibitory LHIs decreased as a function of

increasing concentration, ensuring that the KC

spikes occurred in progressively smaller windows.

(c) Average spike delay across all trials. The KC

integration window, defined by the mean time

delay (measured in terms of the phase of the PN LFP) of LHI spikes (shadowed area) decreased with decreasing s.d. Without inhibition, most KC spikes occurred

outside this integration window. Discontinuous black lines show the mean time delay (dotted line) and the error bars (dashed lines) for KC spike timing in the

absence of LHI inhibition. The solid black line shows the mean KC spike time delay in the presence of feedforward inhibition. (d) The phase distribution of LH

and KC spikes for two concentrations (top, s ¼ 0.25; bottom, s ¼ 0.35). The peak phase of KC spikes in the absence of inhibition (right) occurred after the peak

phase of LHI spikes. The magnitude of the peak KC phase increased dramatically with an increase in concentration. When LHI inhibition is present (left),

most KC spikes that would have occurred after the peak of the LHI spike phase in the absence of inhibition were effectively cut off.
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to an increase in the coherence of projection neuron spiking (Fig. 5a).
In this condition, the LHIs received enough projection neuron input to
spike earlier in an LFP cycle. This projection neuron input was
substantially higher than what is required by individual LHIs to
spike. Therefore, the intrinsic variability in LHI properties (distributed
spiking thresholds) did not have a substantial effect on the distribution
of spike times. The synchrony of LHI mean firing phase increased
nonlinearly with concentration (reflected in a narrow spike distribu-
tion), and the peak phase advanced without a systematic shift in the
peak timing of projection neuron spikes (Fig. 5b). The peak phase of
the projection neuron spike distribution has been shown in vivo to be
independent of concentration (see Fig. 1C1 and 1C2 in ref. 3 for an
analysis of the projection neuron phase distribution; projection neuron
raster plots and other examples of raw data are shown in Figs. 2 and 3).

We determined the distribution of action potentials in projection
neuron, LHI and Kenyon cell populations (Fig. 6a,b). To examine the
change in the balance of inhibitory and excitatory inputs to Kenyon
cells for different odor concentrations, we compared spike distributions
in Kenyon cells with and without inhibitory input (Fig. 6c,d). Without
inhibition, for all odor concentrations, most Kenyon cell spikes
occurred after the peak in the LHI spike distribution (Fig. 6c,d,
right). An increase in odor concentration increased the coherence
and advanced the timing of LHI firing (Fig. 6c, blue line). It also
advanced the peak of the Kenyon cell spike distribution (Fig. 6c, dotted
black line). However, the overall width of the Kenyon cell distribution
remained nearly unchanged (compare Fig. 6d top right and bottom
right), a result of the broader distribution of resting potentials in
Kenyon cells compared with the distribution of LHI resting potentials.
Because almost all LHIs spiked even for moderate odor concentrations,
further increases in concentration mainly affected the coherence
(and timing) of LHI spikes. In contrast, additional spiking Kenyon
cells were recruited across the entire range of odor concentrations; even
the highest concentration evoked substantially delayed spiking in
Kenyon cells that were near the spiking threshold. In vivo, blocking
LHI-mediated inhibition by picrotoxin produced a similar effect on
Kenyon cell spiking; the number of Kenyon cell spikes increased
notably, the distribution of spike times became very broad and the
peak of the distribution was delayed from Bp/2 radians to B3p/4
radians9 (compare this with a change from B1.3 radians to B2.5
radians for s ¼ 0.35 in the model, Fig. 6c).

When we re-established inhibitory input from LHIs in the model,
only a small fraction of Kenyon cell spikes remained. These spikes
occurred in the window of integration defined by the mean LHI spike
delay (shadowed area in Fig. 6c). Additional Kenyon cell spikes that had
occurred later, in the absence of LHI input, were now prevented by
LHI-mediated inhibition (Fig. 6d, left; note y-axis scale change for
Kenyon cell distribution). Because the mean firing phase of LHIs
advanced for higher odor concentrations, the mean number of Kenyon
cell spikes in the model with LHI inhibition remained nearly constant
across the range of concentrations. In contrast, in the model without
LHI inhibition, the height of the Kenyon cell spike distribution
increased markedly with an increase in concentration. (Fig. 6d, right).

We can see, qualitatively at least, how projection neuron population
output changes are compensated for by changes in the strength and
timing of LHI output. We then analyzed the effects of this regulation of
LHI output on Kenyon cells. We adjusted our model to selectively
eliminate the modulation of LHI phase by introducing an artificial
delay D(s), a function of the concentration (dD/ds4 0), into the LHI
input to Kenyon cells (Fig. 7a). In this condition, projection neuron
output coherence increased with concentration, and the feedforward
inhibition by LHIs retained all of its attendant characteristics, except for

the aforementioned phase advance (the new Kenyon cell integration
window, T1 ¼ T(s)+D(s), remained fixed: dT1/ds ¼ 0). As predicted,
the effect on Kenyon cells was substantial, causing explosive Kenyon cell
activation for s 4 0.25 (Fig. 7b). For s ¼ 0.4 (s ¼ 0.35) the total
number of Kenyon cell spikes was B35,000 (B17,500) with 13,080
(9,172) out of 15,000 Kenyon cells spiking at least once. By contrast,
allowing feedforward inhibition from LHIs to adapt freely to projection
neuron coherence (Fig. 7b; that is, to advance as projection neuron
coherence increased) led to very tight regulation of Kenyon cell output,
and maintained Kenyon cell sparseness over a wide range of concen-
trations. The introduction of additional fixed delays, D0, but keeping
the integration window adaptive (T1(s) ¼ T(s)+D0, dT1/dso 0), kept
Kenyon cell activity at experimental levels of sparseness for D0 between
0.0 ms and B2 ms. Additional delays beyond B3 ms led to unrealistic
Kenyon cell activation. Notably, maximum regulation was observed
when no additional delay (0.0 ms) was introduced, when the system
adapted autonomously to input coherence.

Adaptive feedforward inhibition in a minimal circuit

We investigated the principle underlying this self-regulation in a
reduced model that consisted of a pair of neurons coupled by an
inhibitory synapse (Fig. 8). Spike trains with normally distributed
spike-arrival times, emulating input from the antennal lobe over a
single oscillation cycle, were delivered to both neurons, with the model
Kenyon cell receiving only a fraction of the drive to the LHI (Fig. 8a).
We systematically manipulated the width of this spike-arrival–time
distribution (Fig. 8c, top panel) to simulate the changes in projection
neuron coherence caused by changing odor concentration (single trials,
Fig. 8c, lower 3 panels; measured as the probability over 200 indepen-
dent trials, Fig. 8b, top panel). Increases in input coherence (decreased
s.d.) increased LHI firing probability (Fig. 8b, top; Fig. 8c, second
panel). This increase in LHI response probability was accompanied by a
decrease in the mean delay to an LHI spike (Fig. 8c, bottom; see also
Fig. 8b, second panel for a single trial); it is this delay that defines the
Kenyon cell integration window (blue shaded area, Fig. 8b, second
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Figure 7 Phase advance of LHIs maintains the sparseness of KC activity.

(a) Top, the LHIs, on average, spiked at earlier phases of the oscillatory cycle

as a function of increasing concentration. The filled circles show the peak

LHI phase as a function of increasing concentration. Bottom, the effect of the

phase advance on the response of KCs was demonstrated by introducing an

increasing delay, D(s), that offsets the LHI activity such that the mean phase

of LHI spikes did not change as a function of increasing concentration. This

disambiguates the effect of the amplitude of LHI activity from its phase

advance. (b) The phase advance of LHI spiking activity modulated the KC

response. Two extreme cases, corresponding to a, top (labeled ‘0.0’),

and a, bottom (labeled ‘variable’), show qualitatively different behavior
for higher concentrations. The KC activity for intermediate fixed delays

(D0 ¼ 1.2–5 ms) ranged between these two extremes.
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panel). A notable feature of the Kenyon cell response in the presence of
feedforward inhibition (Fig. 8b, top; Fig. 8c, third panel) is its
consistently low firing probability over the range of input coherence
tested. In this minimal model, the regulation of Kenyon cell firing
probability, a prerequisite for sparseness in the full-scale model net-
work, was lost when feedforward inhibition was eliminated (Fig. 8b,
top; Fig. 8c, bottom). In the absence of inhibition, most of the Kenyon
cell spikes occurred outside of the window of integration defined by the
mean LHI spike delay (the dotted black line in Fig. 8b, bottom panel,
lies outside the shaded area). Two key factors involved in the regulation
of Kenyon cell spiking by feedforward inhibition are thus revealed.
First, an increase in input coherence necessarily advances the mean
firing time of the LHIs. Second, potential (but normally suppressed)
Kenyon cell spikes (that is, spikes permitted by the absence of feedfor-
ward inhibition) must be distributed such that a substantial proportion
of them would occur outside of the normal window of integration. This
prediction is consistent with experiments. Blocking phasic inhibition of
Kenyon cells both increased their response probability and eliminated
their phase locking to the LFP9, even though projection neuron drive to
them remained phasic and oscillatory. More generally, we note that

these two factors may be easily accomplished
in any network where the input to the neurons
requiring regulation (such as Kenyon cells)
comes from a population of inhibitory inter-
neurons (such as LHIs) with different levels of
excitability (instantiated here by a random
distribution of resting potentials).

DISCUSSION

The progression of olfactory information from
olfactory receptors to higher brain structures
includes multiple levels of processing and
involves complex strategies for the efficient
encoding of information. In the insect anten-
nal lobe, input from olfactory receptors trig-
gers dynamic spatiotemporal patterns of
neuronal activity including oscillatory syn-
chronization to encode the identity and con-
centration of odors3,4,7,8. Although the fine
temporal structure in these patterns may con-
tribute relatively little to coding and decoding
in simple olfactory tasks such as when dis-
criminating ensembles of receptors that do not
significantly overlap with one another (acti-
vated, perhaps, by odorants with chemically
distinct structures), fine temporal features
appear to become critical when discrimination
tasks are more challenging, such as when
activated ensembles of olfactory receptors sub-
stantially overlap29. Such overlap is elicited by
odors that are chemically similar, and by
different concentrations of the same odor3.

Recordings made in vivo from the locust
antennal lobe revealed that changes in odor
concentration led to a complex and nonlinear
evolution in the response patterns of projec-
tion neurons3. An analysis of large popula-
tions of projection neurons showed that an
important invariance emerged from the
antennal lobe dynamics: different concentra-
tions of the same odors induced responses

that formed an odorant-specific manifold in a high-dimensional space
of all projection neuron responses. This concentration-dependent
structure of the antennal lobe response patterns resulted, in part,
from marked increases in the coherence of projection neurons at higher
odor concentrations3. Here, with simulations in a realistic antennal
lobe model, we found that, when odor concentrations were higher, a
larger fraction of the inhibitory local neurons produced spikes during
odor stimulation. In turn, these spikes increased the precision of
projection neuron spiking. Changes in the activity of groups of local
neurons over the odor duration23 have been proposed as a mechanism
for transient projection neuron synchronization7,8. Here we found that
the same mechanism can modulate the synchronization properties of
projection neuron responses across a range of odor concentrations.
Our model’s simulated antennal lobe network preserves the salient
properties seen in the experiment, including odor and concentration-
based clustering, while maintaining local field oscillations at approxi-
mately 20 Hz. When odor representations at each time point were
considered as instantaneous vectors of activity across the whole
projection neuron population in the model, the vectors corresponding
to different odors diverged in the first few cycles of the local field
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Figure 8 Role of feedforward inhibition in a minimal neural circuit. (a) KC is inhibited by LHI. Both KC

and LHI received normally distributed random depolarizing input emulating spikes from the antennal

lobe. N ¼ 100 synapses were connected to LHI. Of these, N/3 randomly selected synapses were

connected to KC. (b) Top, probability of firing. The LHI spiking probability (solid blue line) increased with

increasing coherence (decreasing s.d.), whereas the KC spiking probability (solid black line) remained
low when it received feedforward inhibition from LHIs. In the absence of LHI inhibition, KC spiking

probability (dotted black line) increased monotonically as a function of decreasing s.d. until it spiked

reliably during each odor presentation. Bottom, average spike delay across all trials. The KC integration

window, defined by the mean time delay of LHI spikes (light blue area), decreased with decreasing s.d.

Without inhibition, most KC spikes occurred outside this integration window. Discontinuous black lines

show the mean time delay (dotted line) and the error bars (dashed lines) for KC spike timing in the

absence of LHI inhibition. The solid black line shows the mean KC spike time delay in the presence of

feedforward inhibition. (c) External input and responses of KC and LHI for one representative trial of

external stimulation. Top, arrival times (abcissa) of external spikes were plotted for different values of

s.d. (ordinate). The color bar indicates number of input spikes in 0.5-ms bins. Middle, responses of LHI

and KC in the presence of feedforward inhibition. Bottom, KC response in absence of LHI-mediated

inhibition. The color bar indicates membrane voltage Vm.
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oscillations, whereas different concentrations of a particular odor
formed neighboring trajectories.

In insects, odor information processed in the antennal lobe is
transferred to the mushroom body, a structure analogous to the
olfactory cortex, and one important for memory formation4–6. Imple-
menting both antennal lobe and mushroom body circuitry in our
model, we found that a manifold formed by projection neuron
responses for different concentrations of a given odor is mapped into
a higher-order manifold in the Kenyon cell activity space. Because of
the very large number of Kenyon cells, however, mushroom body
responses for different odor concentrations formed well-separated
clusters with little or no overlap, even for close (and highly overlapping
at the level of the input to the antennal lobe) odor concentrations.
Therefore, the odor concentration–specific structure of the neuronal
responses in the antennal lobe is transmitted to the mushroom body;
this structure allows for the use of potentially simple and efficient
strategies to discriminate and categorize different odors and different
odor concentrations. Maintaining the sparseness of Kenyon cell
responses across the broad range of odor concentrations is essential
to the efficiency of this encoding process. Indeed, recordings made
in vivo from the mushroom body demonstrate that typically only a few
Kenyon cells from a recorded population of neurons respond reliably
when an odor is presented9. Different odors, and different concentra-
tions of odors, can induce responses in different Kenyon cells3. Such
response specificity in the mushroom body was proposed to depend on
the coincidence detection properties of the Kenyon cells9,10.

Coincidence detection offers a number of advantages for encoding
sensory information over integration, including greater stability against
input noise28,30 and greater ability to discriminate among related input
vectors9. However, encoding by coincidence detection is necessarily
more sensitive to global changes in the temporal structure of the input.
To achieve sparse and selective representations, coincidence detectors
must operate near a critical point that allows relatively few synchronous
inputs to elicit a spike in the given integration window. However,
assuming a continuous distribution of coherence across inputs, coin-
cidence detection may be easily saturated by even a moderate increase in
overall input synchrony. An example of this phenomenon is provided
by olfaction. An increase in odor concentration leads to such an increase
in coherence, therefore destabilizing the fine balance between the
properties of the input and intrinsic characteristics of Kenyon cell
circuitry. This would, in contradiction to the experimental data, lead to
a loss in the sparseness of representation in the mushroom body.

Our model, which is constrained by well-characterized features of the
locust olfactory system, shows that stability against global changes in the
temporal structure of the input can be achieved by an adaptive, dynamic
integration window that is itself dependent on the stimulus. Delayed,
discrete feedforward inhibition from the same input that provides
excitation, as found here, can endow coincidence detectors with the
requisite properties. As odor concentration increased, it advanced the
timing of the peak of the inhibitory input, thus effectively reducing the
integration window of the Kenyon cells. Therefore, the necessary balance
between the input properties (degree of projection neurons coherence)
and the properties of the Kenyon cells circuitry (size of the integration
window) is maintained automatically through a range of stimulation
intensities. Earlier studies have implicated feedforward inhibition in
regulating the temporal integration of inputs11,12. However, the subtle
adaptive nature of feedforward inhibition, essential for maintaining
sparseness of odor representations, has thus far been overlooked.

It has been proposed before that stimulus-dependent phase shifts
between neurons could encode information31. In contrast, we propose
that such shifts are not encoding variables; instead, they have a

structural role in maintaining response density across a wide range of
input conditions. The existence of comparable feedforward inhibitory
pathways in a number of neural circuits, including hippocampus11,32,
cerebellum12,27, lateral geniculate nucleus33 and sensory circuits sensi-
tive to the precise timing of excitatory input6,34, suggests the potentially
widespread applicability of the mechanism described here.

METHODS
Antennal lobe model. The antennal lobe model included 300 projection

neurons and 100 local neurons, and is based on a previous model22,23.

Individual projection and local neurons were modeled by a single compartment

that included voltage- and Ca2+-dependent currents described by Hodgkin–

Huxley kinetics23. In the model, isolated projection neurons showed over-

shooting Na+ spikes at a fixed frequency throughout constant depolarizing

stimulation. Local neurons, in contrast, fired low-amplitude Ca2+ spikes

and demonstrated spike-frequency adaptation caused by Ca2+-dependent

potassium currents. Fast GABA (local neuron–projection neuron and local

neuron–local neuron connections) and nicotinic cholinergic synaptic currents

(projection neuron–local neuron connections) were modeled by first-order

activation schemes35. Slow GABAergic synapses (local neuron–projection

neuron connections) were added to account for slow temporal patterns in

network activity20,36. In the model, the slow inhibitory receptors could only be

activated by a long train of local neuron Ca2+ spikes at relatively high

frequencies, and the maximal conductance was set low compared with the fast

GABA conductance so that the slow dynamics did not affect the 20-Hz

oscillations. Maximal conductances denoting the total excitation and inhibition

received by a given cell were set to GACh (projection neuron–local neuron)

¼ 0.5 mS, GGABA_fast (local neuron–projection neuron) ¼ 0.4 mS, GGABA_slow

(local neuron–projection neuron) ¼ 0.025 mS, and GGABAfast (local neuron–

local neuron) ¼ 0.2 mS. All interconnections in the antennal lobe model were

random, with a probability of 0.5. The equations for all intrinsic and synaptic

currents are given in22,23.

Kenyon cell and LHI model. To study the odor representations in the

mushroom body, we must take into account25 the vast divergence of connec-

tions from the antennal lobe to the mushroom body. This task necessitates a

large number of model neurons and large computational resources. To

circumvent this, we generated a reduced and computationally efficient neuronal

model for both Kenyon cells and LHIs37,38. This model, despite its low

dimensionality, produces a rich repertoire of dynamics and has been shown

to mimic the dynamics of Hodgkin-Huxley–type neurons, both at the single–

cell level and in the context of network dynamics37,38. Kenyon cells (15,000 cells)

and LHIs (100 cells) were modeled as regular spiking cells (equations 1 and

2 in ref. 38) with synaptic interactions according to equation (5) in ref. 38. The

model parameter s (equation 1 in ref. 38) affects the resting potential (and

therefore, the spiking threshold) of LHIs and Kenyon cells. For the population

of LHIs, s was picked randomly from a uniform distribution over the interval

(0.03, 0.04) to provide some variation in the spike timing across all LHIs. Given

the small number of LHIs (n ¼ 100), we chose a uniform distribution as an

unbiased estimate of the LHI resting potentials. The value of s for Kenyon cells

(n ¼ 15,000) was picked from a Gaussian distribution with a mean of 0.03 and

an s.d. of 0.01, ensuring a broader distribution of Kenyon cell resting potentials.

Preliminary simulations indicated that our specific choice of distribution was

not critical to the conclusions of our model. The minimum value of s for

Kenyon cells was 0.001 and the maximum was 0.06. Maximal conductances

(in dimensionless units, see ref. 38) denoting the total excitation and inhibi-

tion received by a given cell were set to GACh(projection neuron–Kenyon cell)

¼ 0.0008, GACh(projection neuron–LHI) ¼ 0.0015, and GGABA_fast (LHI–

Kenyon cell) ¼ 0.005. This choice of spiking thresholds and the strength of

synaptic input from the antennal lobe were set such that a minimal (nonzero)

response could be elicited from Kenyon cells for the lowest concentration tested,

and to achieve substantial LHI firing even for moderate odor concentrations.

Stimulation. The intensity (amplitude) of the stimulus to projection neurons

and local neurons followed a Gaussian distribution truncated at 0.1 to avoid

stimulating all projection neurons. We randomly determined which projection

and local neurons received input with a particular intensity. The proportion of
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local neurons receiving non–zero input was approximately one third that of

projection neurons receiving nonzero input. The temporal variation of the

stimulus was modeled by a current pulse with a rise-time constant of 100 ms

and a decay-time constant of 200 ms22,23,39. The current used for each pulse

was calculated as the total synaptic current produced by N Poisson-distributed

spike trains (each with average spike rate m) arriving at N-independent

excitatory synapses. Each glomerulus in the locust antennal lobe is thought

to receive between 100 and 200 axons from olfactory receptors neurons40. In

our simulations N was set to 200 and m to 100 Hz to match the membrane

potential fluctuations recorded in postsynaptic projection neurons in vivo (for

example, Fig. 2 in ref. 41).

Reduced two-cell network. Both the LHI and Kenyon cell in the two–cell

network were modeled using the same equations37,38 as in the full network. The

Kenyon cell and LHI were connected by an inhibitory synapse. Both received

external input through N ¼ 100 excitatory synapses. All N synapses were

connected to the LHI and N/3 randomly selected synapses were connected to

the Kenyon cell. The spike times in each synapse were independent and taken

from a normal distribution with s.d. varying between 1 and 22 ms. The

stimulation was repeated independently 200 times.

Analysis. We first generated a time series consisting of the spike counts over

50-ms bins for all projection neurons. The resulting 300-dimensional time

series (ten odor presentations, two odors and five concentrations) were

concatenated before computing the principal components over the entire data

set. We show 300-dimensional time series projected onto the first three principal

components (B65% variance) in Figure 3a. Each point in a trajectory

corresponds to the number of spikes in each of the 300 projection neurons

in a 50-ms bin; the entire 3-s trajectory consists of 60 such points. The complete

trajectories were embedded in a higher-dimensional space (300 projection

neurons � 60 time points) where each vector represents the spatiotemporal

pattern of projection neuron activity over the duration of an odor presentation

(Fig. 3b). The 300 � 60–dimensional vectors corresponding to all the condi-

tions were concatenated before calculating the principal components (Fig. 3b

was obtained by projecting these high-dimensional vectors onto the first three

principal components, B65% of variance). The phase values used to construct

the distributions in Figures 5, 6 and 7 were generated using the projection

neuron LFP as a reference. The oscillatory LFP was first filtered (5–25 Hz) and

the instantaneous phase was calculated using a Hilbert transform.

Experimental data. Young adult locusts (n ¼ 54, Schistocera americana) were

immobilized with one antenna intact and fixed in place. The brain was exposed,

desheathed and bathed in locust saline as previously described42,43. LFPs were

recorded either using saline-filled blunt glass micropipettes (tip B10 mm,

B10 MO) with a direct current amplifier (NPI, Adams-List) or with custom

wire tetrodes. Intracellular and extracellular recordings from projection neu-

rons were made as described3. For experiments with extracellular recordings,

octanol, hexanol and geraniol were mineral oil–dilution standardized by vapor

pressure in accordance with Raoult’s law, and then serially diluted to yield

strengths of 0.001, 0.01, 0.05, 0.1 or 1 � that of the standard.
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