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Bazhenov M, Rulkov NF, Timofeev I. Effect of synaptic connectiv-
ity on long-range synchronization of fast cortical oscillations. J
Neurophysiol 100: 1562–1575, 2008. First published July 16, 2008;
doi:10.1152/jn.90613.2008. Cortical gamma oscillations in the 20- to
80-Hz range are associated with attentiveness and sensory perception
and have strong connections to both cognitive processing and tempo-
ral binding of sensory stimuli. These gamma oscillations become
synchronized within a few milliseconds over distances spanning a few
millimeters in spite of synaptic delays. In this study using in vivo
recordings and large-scale cortical network models, we reveal a
critical role played by the network geometry in achieving precise
long-range synchronization in the gamma frequency band. Our results
indicate that the presence of many independent synaptic pathways in
a two-dimensional network facilitate precise phase synchronization of
fast gamma band oscillations with nearly zero phase delays between
remote network sites. These findings predict a common mechanism of
precise oscillatory synchronization in neuronal networks.

I N T R O D U C T I O N

The waking state of the brain is characterized by a low
correlation of spike discharges across neighboring neurons
(Noda and Adey 1970) and the predominance of frequencies in
the beta (15–30 Hz) and gamma (30–80 Hz) ranges (Bressler
1990; Freeman 1991). Studies have indicated that cortical
gamma activity is associated with attentiveness (Bouyer et al.
1981; Rougeul-Buser et al. 1975), focused arousal (Sheer
1989), sensory perception (Gray et al. 1989), working memory
(Axmacher et al. 2007), and movement (Murthy and Fetz 1992;
Pfurtscheller and Neuper 1992). It has been proposed that
synchronization in the gamma frequency range is related to
cognitive processing and to the temporal binding of sensory
stimuli (Joliot et al. 1994; Llinas and Ribary 1993; Singer and
Gray 1995). Gamma oscillations can also become synchro-
nized between neighboring cortical sites during deep anesthe-
sia, natural slow-wave, and REM sleep (Steriade et al.
1996a,b).

Gamma oscillations induced by visual stimuli become syn-
chronized over distances of a few millimeters with nearly zero
phase lag (Gray et al. 1989). Precise long-range synchroniza-
tion in the gamma (20–80 Hz) frequency range was found
between primary and associational visual cortices (Engel et al.
1991; Frien et al. 1994), between prefrontal and parietal cor-
tical areas (Desmedt and Tomberg 1994), and between the

cortex and the thalamus (Steriade et al. 1996b). Synchronized
gamma band activity has been observed in the visual cortex of
anesthetized cats (Eckhorn et al. 1988; Gray et al. 1989;
Steriade et al. 1996a,b), and awake monkeys (Eckhorn et al.
1993; Kreiter and Singer 1992). These results support the
hypothesis that gamma synchronization plays a role in the
binding of spatially distributed features and inter-area cooper-
ation (Gray et al. 1989). However, the limited speed of spike
propagation along axonal collaterals (e.g., 0.15–0.55 m/s for
pyramidal cells) (Murakoshi et al. 1993), in addition to synap-
tic delays, leads to the question: what are the mechanisms that
can provide precise long-range synchronization of gamma
activity? Based on simulations of conductance-based network
models organized in 1D structures, it has been proposed that
interneuron spike doublets are critical for the long-range syn-
chrony of gamma oscillations in the hippocampal CA1 region
(Traub et al. 1996b). In other studies, the synchrony of gamma
oscillations was simulated using models with random and
sparse (Brunel and Wang 2003) or all-to-all connectivity
(Borgers et al. 2005).

The cerebral cortex is a three-dimensional structure. Ideally
a cortical network model should simulate this structure by
explicitly modeling lateral two-dimensional connectivity as
well as cortical depth (layer structure). However, a majority of
computational studies, including those dealing with neural
oscillations and synchrony, simulate the cortex in only one
dimension. In this study, we report how the network geometry
and connectivity can critically influence the synchronization
properties of fast cortical oscillations. Using in vivo recordings
from anesthetized cats, we show the existence of precise
gamma range synchronization in isolated cortical slabs
(Timofeev et al. 2000), thus excluding extracortical mecha-
nisms of synchronization. Based on large-scale cortical net-
work simulations, we show how the existence of many inde-
pendent synaptic pathways between remote sites in a two-dimen-
sional network facilitates precise long-range synchronization of
cortical gamma oscillations. Although explicit representation of
cortical depth may be lacking, our model includes lateral connec-
tivity in two dimensions. Using this model, we show that neuronal
synchrony and oscillations cannot be properly described using a
1D approach.
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M E T H O D S

In vivo recordings

Multi-site field potential recordings were performed on slabs and
surrounding tissue in four cats anesthetized with ketamine-xylazine
(intramuscular injection of 10–15 mg/kg ketamine and 2–3 mg/kg
xylazine). Additional doses of anesthesia were administrated when the
electroencephalograph (EEG) showed changes toward activating pat-
terns. The slabs were prepared as described in Timofeev et al. (2000).
Monopolar field potential recordings were performed with a tungsten
electrode (1 M� inserted to a depth of 1 mm) with neck muscles
referenced. All recordings were obtained within 3–10 h from the
isolation of the slab. Ten to 15 active periods were analyzed in each
of four cats. Electrographic activities were amplified (�1,000), band-
pass filtered (0.1–1,000 Hz), and digitally stored using a Vision
data-acquisition system (Nicolet, WI). Analysis of the recorded ac-
tivity was done with IgorPro software (Lake Oswego, OR). All
experimental procedures used in this study were performed in accor-
dance with the Canadian guidelines for animal care and were ap-
proved by the Committee for Animal Care of Laval University.

Network model

We studied two-layer, one- and two-dimensional network models
of up to 640 � 640 (409,600 total) excitatory pyramidal (PY) neurons
and 320 � 320 (102,400 total) inhibitory interneurons (INs). The ratio
of PY neurons to INs was kept at 4:1. Each neuron in the network
received synaptic inputs from all the neurons of given type located
within a certain radius. This set of presynaptic neurons formed a
synaptic footprint. We also tested models with different PY to IN
ratios (e.g., equal number of PY and IN neurons), and we found the
network dynamics to be qualitatively similar as long as the individual
synapses were scaled to keep the total inhibitory drive to PY neurons
unchanged. The radius of the synaptic footprint was 8 for neurons
with AMPA-mediated PY-PY synapses [�200 presynaptic neurons in
2-dimensional (2D) model with circular connectivity], 8 for neurons
with AMPA mediated PY-IN synapses (�200 presynaptic neurons in
2D model with circular connectivity) and 4 for neurons with GABAA-
mediated IN-PY synapses (�50 presynaptic neurons in 2D model
with circular connectivity). We have also tested models with a larger
synaptic footprint (up to �1,200 excitatory and �300 inhibitory
inputs in 2D model) and with different footprints of excitatory and
inhibitory connections. No difference was found in the model dynamics,
provided the individual synaptic connections were scaled to keep the total
synaptic input the same.

Individual neuron models

To allow for a detailed analysis of oscillatory dynamics in
large-scale network simulations, we used a reduced neuron
model described by difference equations (map) (Bazhenov
et al. 2005; Rulkov 2002; Rulkov et al. 2004). The model is
described by the following equations: Vn�1 � f��Vn, In � �n�,
In�1 � In � ��Vn � 1� � �� � ��n, where Vn is the
membrane voltage, In is a slow dynamical variable describing the
effects of slow conductances, and n is a discrete time step (�0.5 ms).
Slow temporal evolution of In was achieved by using small values of
the parameter � �� 1. Input variables �n and �n were used to
incorporate external current In

ext (e.g., synaptic input): �n � �eIn
ext,

�n � �eIn
ext. The nonlinearity f�(V, I) was designed in the form of a

piece-wise continuous function

f��Vn, In� � � ��1 � Vn�
	1 � In, Vn � 0

� � In, 0 	 Vn 	 � � In and Vn	1 � 0
� 1, � � In � Vn or Vn	1 
 0

To convert the dimensionless “membrane potential” V to the
physiological membrane potential Vph, the following equation was
applied: Vph � V*50–15 [mV].

This model, despite its intrinsic low dimensionality, produces a rich
repertoire of dynamics and is able to mimic the dynamics of Hodgkin-
Huxley type neurons both at the single-cell level and in the context of
network dynamics (Bazhenov et al. 2005; Rulkov et al. 2004). Two
different cell types were implemented: a fast spiking neuron for
inhibitory INs and a regular spiking neuron for excitatory PY neurons.
To simulate a regular-spiking neuron, the model parameters were set
at � � 3.65, � � 0.09, � � 0.0005, �e � 0.03, �e � 1. The model
parameter � sets the resting potential of the neuron and, therefore, its
state with respect to spiking threshold. The neuron was silent for � �
0.085. For � � 0.09, the isolated model neuron spiked at a low
frequency of 6–7 Hz. When � was increased to � � 0.17 to model the
effect of external depolarizing input, the firing frequency increased to
�20 Hz (Fig. 1A). To ensure variability of the resting potentials
across a population of neurons, � was picked randomly from a
uniform distribution with 0.1% variability.

In response to a rectangular pulse, a fast-spiking neuron fires
without spike frequency adaptation, but it shows a noticeable hyper-
polarization induced by each spike. To capture this hyperpolarization
effect, the slow subsystem in the model used for a regular-spiking
neuron (see preceding text) was substituted with an equation for the
hyperpolarizing current In

hp generated by the action of each spike as
follows

In�1
hp � �hpIn

hp � � if the n-th iteration carries a spike
0, otherwise.

The parameter, �hp, controls the duration, �hp � (1 	 �hp)	1, and
the parameter, ghp, controls the amplitude of the hyperpolarization
current. The model of the fast spiking neuron in this study can be
described by the following equation Vn�1 � f(Vn, Irest � �hpIn

hp �
�eIn

ext), where Irest is a constant defining the resting state of the model,
and In

hp is a new slow variable. These equations with parameter values
� � 3.8, Irest � 	2.9, �hp � 0.5, �hp � 0.6, ghp � 0.1, �e � 0.1, were
used to describe the dynamics of fast spiking INs.

To model synaptic interconnections, we used conventional first-
order kinetic models of synaptic conductances rewritten in the form of
difference equations

gn�1
syn � �gn

syn � � gsyn, spikepre,
0, otherwise

and the synaptic current computed as

In
syn � � gn

syn�Vn
post � Vrp�

where gsyn is the strength of synaptic coupling, and indices pre and

25 msec

-50 mV

20 mV

1 mV

-62 mV

IN

PY

-65 mV
50 msec

A

B

FIG. 1. Model properties. A: steady-state response pattern of excitatory
(PY) neuron for 3 different levels of the resting potential. Black, � � 0.06;
green, � � 0.09; blue, � � 0.17. B: inhibitory postsynaptic potential (IPSP) in
the postsynaptic PY neuron (bottom) triggered by a spike in presynaptic
interneuron (IN) (top).
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post stand for the pre- and postsynaptic variables, respectively. The
first condition, spikepre, is satisfied when presynaptic spikes are
generated. Parameter � controls the relaxation rate of synaptic
conductance after a presynaptic spike is received (0 � � � 1).
Parameter Vrp defines the reversal potential and, therefore the type
of synapse: excitatory (Vrp � 0) or inhibitory (Vrp � 	1.1). A
single inhibitory postsynaptic potential (IPSP) produced in a
postsynaptic excitatory cell by a spike in a presynaptic IN is shown
in Fig. 1B. To model a synaptic delay, the implementation of
condition spikepre may be delayed from the moment of the presyn-
aptic spike generation by the number of iterations corresponding to
the delay time.

Synaptic weights of individual synapses were always scaled by the
number of synapses to allow a direct comparison between one- and
2D network models. Maximal conductances (in dimensionless units)
(see Rulkov et al. 2004) denoting the total excitation and inhibition
received by a given cell were selected from the following range:
GABAA (IN–PY) � 0–0.0025, AMPA (PY–IN) � 0–0.005, and
AMPA (PY–PY) � 0–0.0001. There is no simple way to associate
these dimensionless units with maximal synaptic conductances mea-
sured experimentally. However, the range of values we used corre-
sponded to the physiological range [e.g., IPSP size in the excitatory
neuron was �2 mV for GABAA (IN–PY) � 0.007, Fig. 1B]. An
external DC input of constant amplitude was applied to all PY neurons
within a selected region to trigger network gamma oscillations. In
some simulations, to test the stability of the synchronized states, these
external stimuli were applied to different neurons at different times
(with different delays that were drawn from a uniform distribution [0,
50 ms]).

Frequency analysis

To characterize the changes in network oscillation frequency, we
calculated the power spectrum of the “field potential” (averaged
activity) generated by the membrane potentials of individual PY and
IN cells and plotted them as a function of network parameters. The
frequency of network oscillations was evaluated as the frequency of
peak harmonics in the field potential power spectrum.

Cross-correlation analysis

To characterize the synchrony of gamma oscillations, the local field
potentials were calculated by averaging the activity of all PY neurons
within N � N [for 2-dimensional (2D) network] or N � 1 [for
1-dimensional (1D) network] groups covering the entire population of
neurons receiving external input. Cross-correlations were calculated
for all pairs of field potentials as

C�td, k, l, k
, l
�

�
�
n

�xn
s�k, l� � xn

s�k, l���xn�td

s �k
, l
� � xn�td

s �k
, l
�

��
n

�xn
s�k, l� � xn

s�k, l��2�
n

�xn�td

s �k
, l
� � xn	td

s �k
, l
��2

where (k, l) and (k
, l
) are the indices of cells located at the
center of each group, xn

s(k, l) is local field potential at site (k, l),

xn
s�k, l� � �n�l

N xn
s�k, l�/N , and N is the number of data points of

xn
s used for the analysis. The distribution of time lags to the main peak

of the cross-correlation function was plotted for different parameter
values. To study the role of network geometry, the normalized prob-
ability density distribution of time lags to the main peak of the
cross-correlation function was plotted for each network size on a
logarithmic scale.

R E S U L T S

Gamma oscillation during active cortical states in vivo

To exclude extracortical mechanisms of long-range gamma
synchronization, we analyzed spontaneous activity in vivo in
small, surgically isolated islands of neocortex (slabs) (Timofeev
et al. 2000). Neuronal activity in slabs consisted of brief active
periods separated by long periods of silence (�60 s in dura-
tion). Each active period (reminiscent of UP states) (Steriade et al.
1993; Wilson and Kawaguchi 1996) appeared spontaneously,
lasted a few hundred milliseconds, and appeared as fast neu-
ronal oscillations in the beta-gamma frequency range superim-
posed over large depolarizing potentials. The synchronization
properties of these states were studied using multi-electrode field
potential recordings from isolated slabs (Fig. 2A). Two observa-
tions became evident from our analysis: 1) in all four recorded
animals, the onset of an active state propagates from the
initiation site such that the entire network becomes involved in
the oscillation within 50–70 ms (58 � 3 ms, Fig. 2, B and C,
top). The initiation site was never found to be �2 mm from the
border of the slab. 2) Fast network oscillations that occurred
during the active state did not propagate and were synchro-
nized across the slab (Fig. 2, B and C, bottom). During indi-
vidual cycles, the maximum of the cross-correlation func-
tion could be delayed by 1–2 ms. When electrode 5 was used
as a reference (Fig. 2) in all four slabs, the maximum delays
never exceeded 2 ms with 0.27 � 0.67 ms between elec-
trodes 5 and 8 (distance 4.5 mm) and 0.22 � 0.53 ms
between electrodes 5 and 3 (distance 3.0 mm). The first
finding clearly demonstrates that synaptic delays substan-
tially limit the propagation velocity of activity onset within
the slab. It takes 50 ms for an active state initiated near the
center of the network to reach its boundaries (Fig. 2C, top).
However, synaptic delays did not affect the synchronization of
fast cortical oscillations (Fig. 2C, bottom). These results are in
agreement with previous findings of precise synchronization of
gamma activity (Desmedt and Tomberg 1994; Eckhorn et al.
1988, 1993; Engel et al. 1991; Frien et al. 1994; Gray et al. 1989;
Kreiter and Singer 1992) and raise a fundamental question:
how is long-range gamma synchrony maintained in spite of
the presence of synaptic delays and limited axonal propa-
gation speed?

Fast gamma oscillations in the network model

To study long-range cortical synchronization, we con-
structed a cortical network model including layers of excitatory
PY neurons (regular spiking type, representing a layer of PY
neurons) and inhibitory INs (fast-spiking type, representing
local INs; Fig. 3A). Only IN-PY and PY-IN connections were
included in this particular network model. However, PY-PY
connections were introduced in other simulations (Fig. 4Ai).
Neuronal dynamics was simulated using reduced models im-
plemented with difference equations (Bazhenov et al. 2005;
Rulkov 2002; Rulkov et al. 2004). This approach allowed for
efficient large-scale simulations, while still preserving realistic
firing patterns (Rulkov et al. 2004) and intrinsic resonance
properties (Bazhenov et al. 2005) of different types of neurons.
The synaptic connection between any two interconnected neu-
rons was modeled with a single synapse. Therefore the maxi-
mal strength of a synapse (synaptic weight) in the model
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characterized the number of synaptic contacts between two
neurons. In the cortex, synaptic connections involved in a
feedback inhibitory loop (PY-IN-PY) occur with much higher
probability than synaptic connections between excitatory neu-
rons (PY-PY) (Yoshimura and Callaway 2005). Therefore in
our model, lateral excitatory connections between PY neurons
were implemented with lower strength (see METHODS) than
those responsible for feedback inhibition (Thomson and Morris
2002; Thomson et al. 2002). A time delay between presynaptic
action potentials and the postsynaptic response was introduced
to all synapses in the model to simulate both synaptic and
conduction delays. Long-range PY-PY connections have not
been included in our model to ensure that any two remote
network sites are separated by multiple synaptic connections
and therefore multiple delays.

In the absence of synaptic coupling, the neurons in the
model were depolarized above the spiking threshold and fired
randomly. To study the effect of synaptic feedback inhibition
on the network synchronization properties, the local (within a
footprint, see METHODS) excitatory (AMPA-type) connections
from PY neurons to INs and inhibitory (GABAA–type) con-
nections from INs to PY neurons were introduced in a 1D
network model (chain of neurons). As a result, the network
activity became synchronized, with manifested effect of
�40-Hz mean field oscillations (Fig. 3B). A sufficient level of
depolarization was required so the neurons could maintain
gamma range network oscillations. The mean field (i.e., field

potential; FP), was estimated as the average of the membrane
potential across all PY neurons in the network (see Assisi et al.
2007; Bazhenov et al. 2001; Hill and Tononi 2005 for a similar
approach). In some experiments, we convolved all the spikes
with an exponentially decaying kernel, thereby effectively
replacing each spike by the exponent function with time
constant of the synapse prior to averaging to explicitly simulate
the contribution of synaptic currents to the field potential. Both
approaches produced similar results when the synchrony of
oscillations was analyzed.

Different oscillatory states as a function of synaptic coupling

The network activity was characterized by the frequency of
the highest peak in the power spectrum of the mean field
oscillations (Fig. 3C, top). We found that for a wide range of
synaptic weights, the network displayed fast gamma (20–80
Hz range) oscillations; however, the frequency of oscillations
and the dynamic behavior of the network was altered as a
function of the synaptic strength. In the model, an increase of
excitatory PY-IN coupling (gPY-IN) was followed by a step-like
increase in the frequency of mean field oscillations (fFP) and
concurrent decreases of individual PY frequency (fPY) for
certain values of PY-IN coupling–bifurcation points (gi; Fig.
3D). As a result, the frequency ratio, fPY/fFP, characterizing
the network oscillatory state changed at each bifurcation
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FIG. 2. Fast gamma oscillation in vivo. Patterns of activity onset and synchronization during active states in a neocortical slab 6 � 10 mm. A: the position
of recording electrodes. Distance between electrodes �1.5 mm. B: the active state started from around electrode 5 (see left vertical line) and propagated to other
electrodes. C, top: cross-correlation of the onset of active states (electrode 5 is the reference, analyzed fragments from 	100 to �100 ms of electrode 5
half-amplitude). Bottom: cross-correlation during active states (electrode 5 is the reference, analyzed fragments from �200 to �400 ms of electrode 5
half-amplitude). Note the absence of correlation between activities in the slab (electrodes 3–8) and outside the slab (electrodes 1 and 2).
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point: g1: 1/13 1/2; g2: 1/23 1/3; . . . ; gn: 1/n3 1/(n � 1).
Furthermore, gamma range network oscillations were only
observed when the neurons were depolarized sufficiently to
sustain spiking activity (Fig. 3C, bottom). Only transient net-
work dynamics were found for � � 0.085. For � � [0.09,
0.14], the network displayed low-frequency asynchronous fir-
ing at 5–15 Hz. When � was increased beyond � � 0.17, the
firing frequency of individual neurons increased to up to 15–20
Hz and the network oscillations became synchronized. The
level of depolarization also affected conductance values at the
bifurcation points, gi. In agreement with experimental data, INs
were locked to the field and the frequency of IN’s oscillations
was equal to the frequency of mean field activity (Traub et al.
2000).

The model oscillations, characterized by fFP � fPY (gPY-IN �
g1), is reminiscent of transient gamma oscillations that can be
induced by tetanic stimulation of the hippocampal slices
(Traub et al. 1996b; Whittington et al. 1997). An increase of
PY-IN coupling in our model transformed the network to an
oscillatory mode with fFP �� fPY that is similar to persistent
gamma activity found in CA3 (Fisahn et al. 1998) and the
neocortex (Buhl et al. 1998). These results are in agreement
with previous studies (Traub et al. 1996b, 1997) and suggest
that input from GABAergic INs is critical for creating oscilla-
tions in the gamma-beta frequency range and that the balance
between excitatory (PY-IN) and inhibitory (IN-PY) coupling
controls the frequency of oscillations and the resonance mode
(fPY/fFP ratio).

Synchronization properties of gamma oscillations

To study large-scale synchronization properties of gamma os-
cillations, we considered the same synaptically coupled network
with all PY neurons being depolarized just near the spiking
threshold (� � 0.09). This initiated background activity in the
network with all PY cells firing randomly across the population
with a mean frequency in the 4- to 8-Hz range. In the spatial
domain, this activity was manifested by random local waves of
excitation moving through the network. Thus in these experi-
ments, we simulated background network activity (effect of cho-
linergic activation) as opposed to the silent background state
found in our experiments with a slab (Fig. 2). We can speculate
that our model was designed to simulate the background state of
the activated cortical network in vivo in the absence of sensory
stimulation (Noda and Adey 1970; Tsodyks et al. 1999; Volgu-
shev et al. 2006). To model effect of the sensory input, a sub-
population of neurons in the network was depolarized by external
current. In some simulations, depolarization was induced by
changing the parameter � (controlling resting potential) from � �
0.09 to � � 0.17. This depolarization involved 50–80% of the
total population of neurons. Neurons receiving depolarizing inputs
(PYi,j, INi,j) were located in the middle of the network (i0 � i �
imax 	i0, j0 � j � jmax 	 j0); different patterns were tested to
ensure that our results do not depend on a specific stimulus. A
random background network state that was set before the stimu-
lation guaranteed random initial conditions at the stimulus onset.
In some cases, stimuli to different neurons were applied at differ-
ent times (with delays that were drawn from the uniform
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distribution [0, 50 ms]). This further ensured that network
synchronization properties of fast oscillations were not
influenced by the onset of the external input. In addition to
PY3 IN and IN3PY coupling, low-probability excitatory
connections were introduced between PY neurons (Thom-
son and Morris 2002; Thomson et al. 2002; Yoshimura and

Callaway 2005). Each synapse in the model included a 1-ms
“hard-coded” synaptic delay. However, the actual time de-
lay between the presynaptic and evoked postsynaptic spikes
in any of two coupled neurons was substantially larger as it
included the time required to depolarize the membrane of
the postsynaptic cell to its spiking threshold.
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Depolarization of PY neurons led to a firing rate increase up
to 15–20 Hz. The area where firing rate increased remained
localized in space (as opposed to spreading over the entire
network), which potentially allowed many external stimuli to
be processed in parallel. Note that in simulations using a
network model where the neurons are relatively hyperpolar-
ized, the background state was silent and the same stimulus
could trigger waves of activity propagating through the entire
network [as observed in the experiment with slabs (Fig. 2)].
During active background states, shunting inhibition (Borg-
Graham et al. 1998; Hirsch et al. 1998) and an activity-
dependent increase of failures in synaptic transmission (Cro-
chet et al. 2005) significantly reduce the effectiveness of
single-axon excitatory postsynaptic potentials (EPSPs), thus
diminishing activity propagation and, therefore preventing the
cortical network from overexcitation.

In the area of depolarization, the frequency of field potential
oscillations and the network resonance mode were determined
by synaptic coupling as described in the preceding text (Fig.
3C). However, despite the presence of �45-Hz field oscilla-
tions, the synchrony of PY firing across the network was weak
in this 1D network model (Fig. 4A). Different groups of cells
fired with different phase delays relative to the peak of field
oscillations, thereby creating a nonuniform distribution of PY
activity (Fig. 4A, i and ii). The distribution of the time delays
corresponding to the peak of the cross-correlation function
between pairs of local field potentials measured at different
network sites was plotted against the strength of PY-IN cou-
pling (Fig. 4Aiii). Each time delay characterizes a phase shift
between oscillations in two remote network sites; a sharp
distribution of such delays centered at zero would indicate
global synchronization. The width of this distribution increased
rapidly for increasing values of PY-IN coupling. Thus this
network failed to display precise global spatial synchrony of
PY cell activity within the range of network gamma oscilla-
tions. This disagreement between 1D model simulations and
experimental data are not unique to our study and various
strategies have been proposed to address this problem (see,
e.g., Traub et al. 1996b). One difference, however, is obvi-
ous between these models and the biological networks in
vivo (including a cortical slab). The model we considered is
1D in the spatial domain and therefore lacks many important
spatial properties found in biological systems.

Nearly perfect synchronization in 2D network model

To evaluate the effect of the network geometry on the
synchrony of oscillations, we extended our model into the
second spatial dimension without changing any other network
property. The strength of individual synapses was rescaled to
keep the total synaptic input per cell unchanged. The transition
from a 1D network to a 2D network model dramatically
increased the precision of synchrony across the population of
neurons (Fig. 4B). In the 2D model, the local field potential
oscillations at different network sites were synchronized with
�5-ms delay (Fig. 4B, i and ii), while the propagation of
activity between remote sites mediated by synaptic coupling
required �50 ms (estimation based on individual synaptic
delays and network size). An artificially induced increase in the
synaptic delay for each synapse from 1 to 2 ms did not disturb
the precision of long-range synchronization. To test the stabil-

ity of synchronized oscillations, the input to the different
neurons was applied at different times selected randomly from
the uniform distribution [0, 50 ms]. The inset in Fig. 4Biii
depicts a time of �150 ms (after all cells were depolarized) to
achieve global synchrony. When depolarizing input was ap-
plied simultaneously to all neurons, synchronized network
oscillations were achieved within the first few cycles of gamma
oscillations. In this regime of global synchronization, the spike
times of PY neurons were mediated by nearly synchronized
spiking across all INs. Similar to the 1D model, when the
strength of PY-IN coupling was increased, the distribution of
time delays between oscillations in remote sites displayed
sharp increases at each bifurcation point. However, in the 2D
model, the range of synaptic couplings corresponding to the
asynchronous firing was very narrow and oscillations became
synchronized again as the network achieved a new resonance
state (Fig. 4Biii).

Network dynamics near transition points between different
oscillatory states

Analysis of the network dynamics in transition from one
oscillatory state (resonance mode) fFP � nfPY (e.g., fPY/fFP �
1/2, Fig. 4Biii) to the next fFP � (n � 1)fPY (e.g., fPY/fFP � 1/3,
Fig. 4Biii), revealed that two oscillatory states could appear
simultaneously (Fig. 5). In this case, the network displayed a
complex activity pattern consisting of several embedded pop-
ulations of neurons oscillating independently (Fig. 5, A–C).
The exact spatial pattern for each population depended on the
initial state. The boundaries between groups of neurons oscil-
lating in different states evolved very slowly in time. Interest-
ingly, the size of these populations far exceeded the radius of
its synaptic footprint. Again, a cross-correlation analysis re-
vealed precise phase synchronization of oscillations between
remote sites within a given subpopulation of neurons (Fig. 5D).
Spatially separated subpopulations displaying the same type of
oscillations (such as groups 1 and 2 in Fig. 5B) were also
synchronized. The presence of several groups of neurons
oscillating independently explained a sharp increase in the
width of the time delay distribution of each transient state (for
each bifurcation point; Fig. 4Biii). However, when the value of
the coupling strength was shifted away from the bifurcation
point, one of these two oscillatory states waned, thus converg-
ing to a homogeneous network oscillation.

Mechanism for long-range synchronization
of gamma activity

We further investigated different network models that can
explain mechanisms behind precise long-range synchroniza-
tion found in our simulations with 2D cortical networks.

NETWORK WITH CROSS-LIKE CONNECTIVITY PATTERN. To explore
the reasons behind the dramatic improvement of synchrony in
the transition from 1D to 2D network models, we designed a
2D network using a cross-like connectivity pattern (Fig. 6A).
While such a connectivity pattern is definitely a deviation from
realistic biological structure, it allowed us to analyze 2D
models where the number of presynaptic neurons is compara-
ble with that in a 1D model. By reducing the size of the
footprint along the y axis, we could model the transition from
a 2D geometry to a 1D network. Individual synaptic weights
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were scaled by the number of synapses per cell to keep the total
synaptic input constant for all network topologies. To test the
effects of the network boundaries on the network synchroni-
zation, the area depolarized by the input to entrain gamma
oscillations was set asymmetrically. This area included all PY
neurons in the y dimension and only the central group of
neurons (with indexes [30, 226]) in the x dimension (Fig. 6B).
Periodic boundary conditions were used along the y dimension
[neurons at the network boundary (y � 0) were connected to
neurons at the other boundary (y � ymax) using the same
pattern of synaptic connectivity as in the rest of the network].
Input to the different neurons was applied with varying delays
selected from a uniform distribution [0, 50 ms]. The 1D model
derived from a 2D network displayed a low level of synchrony
similar to that in the original 1D model (Fig. 4A). However, the
synchrony of oscillations in a 2D network with full cross-like
connectivity (Fig. 6B) was close to the original 2D model
implemented with a circular connectivity pattern (compare
with Fig. 4B) except near the boundaries where the network
activity displayed propagation. The spiking was synchronized
within �5-ms delays across the entire population of neurons
(Fig. 6B, right). Thus even though the network allows wave
propagation with a velocity limited by synaptic delays, its
dynamics was dominated by highly synchronized oscillations.

The existence of synchrony in the model with a cross-like
connectivity pattern shows that the effect of averaging across a
larger presynaptic population in the 2D model with a circular
synaptic footprint is, in itself, not sufficient to explain its higher
synchrony compared with the 1D model. Rather we propose
that 2D network models with circular or cross-like connectivity
structure support multiple synaptic pathways (polysynaptic
chains) connecting any two network sites and engage different
INs. In a 1D network, there is only one way to connect any two
remote points; therefore a spike delay (or advance) in any
neuron (or small group of neurons) will disrupt precise syn-
chronization between the distal ends of the 1D network and
may even initiate a traveling wave. Indeed the activity in a 1D
network was dominated by local traveling waves diminishing
synchronization of PY firing (Fig. 4Ai). In the 1D network, the
synchrony could be possibly improved if more than one IN
spike is produced at each cycle; those additional spikes may
“simulate” effect of complementary (though not quite inde-
pendent) IN subpopulations. This may explain why IN spike
doublets are important for the long-range synchrony of
gamma oscillations in models of the hippocampal CA1
region (Traub et al. 1996b).

In a 2D network, a similar delay (or advance) of spiking in
a local group of INs will produce a negligible effect on the
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other parts of the network because it would only influence a
small fraction of many synaptic pathways connecting any two
network sites (Fig. 6C). Under these conditions, a group of INs
spiking at differing times from the rest of the population will be
aligned during subsequent cycles of gamma activity by the
feedback action of other neurons. Only when phase delays
along all the pathways in a particular direction happen to match
each other can a 2D network become engaged in global
dynamics with a stable phase difference between oscillations at
remote network sites. Examples of such active states include
plane (or spiral) waves of neuronal activity traveling along the
entire network. This behavior occurs in a network with cross-
like connectivity near the boundaries of the depolarized area on
the sides of the network.

NETWORK WITH A VARIABLE GEOMETRY. To test our hypothesis
that the existence of independent synaptic pathways is critical
for long-range synchronization, we varied the network size in
the y dimension (along the y axis, Fig. 7). All other network
properties, including the number of synapses per cell and the
total synaptic conductance per cell, remained unchanged and
identical to the model shown in Fig. 6B. We expected that as
the network size along the y axis decreased, the number of
independent pathways connecting remote network sites would
also decrease. In the limiting case, only one pathway going
through a 1D chain of neurons along the x axis would remain.
Indeed the synchrony of gamma activity remained high in our
model until the size of the network in the y-dimension became
less than approximately two synaptic footprints (16 PY neu-
rons). The synchrony degraded to the level of a 1D model for
the networks of size less than one footprint (Fig. 7C). The
variety of synaptic pathways between remote sites was lost for
such a narrow network and it started to behave as a 1D system.
For each of these network models, regardless of the size along
the y dimension, the field potential oscillated at �40 Hz,
indicating that network oscillatory state remained unchanged
(Fig. 7D).

This study also showed that the difference in the synchro-
nization properties between 1D and 2D models cannot be
explained by the difference in the strength of individual syn-
apses in 1D and 2D networks (in all our models the synaptic
weights are normalized by the number of synapses per cell to
keep the system in the same oscillatory state regardless of its
geometry). In all simulations shown in Fig. 7, the total number
of synapses per cell, and thus the individual synaptic weights,
remained unchanged. Nevertheless synchronization of gamma
oscillations changed dramatically as a function of the network
geometry (size of the network in y dimension). To further
confirm that an increase in the number of synapses per cell in
a 1D model does not recover synchrony, we simulated a model
with a larger synaptic footprint (�24 neurons for PY-PY,
PY-IN coupling and �6 neurons for IN-PY coupling). This
was compared with a 2D network with a circular footprint and
the same number of presynaptic units per cell (48 PYs and 13
INs). Despite the reduced footprint (compared with previous
2D simulations), the synchrony of oscillations remained high
in this 2D model (Fig. 7E, left). In contrast, in the 1D model,
the synchrony of gamma band oscillations was significantly
reduced (Fig. 7E, right).

NETWORK WITH ALL-TO-ALL CONNECTIVITY ALONG ONE DIMEN-

SION. We also tested a network model with cross-like con-
nectivity where the radius of connections extended over the
entire network along one spatial dimension—the x axis
(Fig. 8A, right). To allow a comparison with a 2D network
with a circular connectivity pattern (Fig. 8A, left), we kept the
number of synapses per cell and the total synaptic conductance
per cell identical between the two models. The power spectrum
of field oscillations in both models displayed a main peak at
�40 Hz (Fig. 8D). Despite the presence of synaptic delays,
oscillations were synchronized in the 2D model with circular
connectivity (Fig. 8, B and C, left). Perfect synchronization in
this direction was displayed at the network where the radius of
connections extended over the entire network along the x axis.
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However, the synchrony along the y direction was lost (Fig. 8,
B and C, right). To quantify the difference between oscillations
in these networks, we calculated time delays (phase shift)
between oscillations in remote sites of the network and then
plotted the distribution of these delays for two different net-
work configurations (Fig. 8E). As before, a distribution with
only zero delays would represent a perfectly synchronized
network. For a 2D network with circular connectivity, most of
the delays were within the range of a few milliseconds (Fig.
8E, green line). For the network with all-to all connections
along the x axis, the distribution of time delays was wide, with
many delays �20 ms (Fig. 8E, blue line), indicating a signif-
icant phase shift between oscillations in remote network sites.
Due to the perfect synchrony of oscillations along the x axis, all
the neurons behaved identically in this direction such that a
spike delay or advance in any neuron was mirrored precisely in
all the neurons along the x axis. In this quasi-1D model any
perturbation will disrupt precise synchronization between the
sides of the network, thus affecting network behavior.

D I S C U S S I O N

Mechanisms and properties of cortical gamma oscillations

Fast neural oscillations in the 20- to 80-Hz range are asso-
ciated with attentiveness (Rougeul-Buser et al. 1975), sensory
perception (Gray et al. 1989), and movement (Murthy and Fetz
1992; Pfurtscheller and Neuper 1992), and show a strong
relation to both cognitive processing and temporal binding of

sensory stimuli (Llinas and Ribary 1993; Singer and Gray
1995). These oscillations are found in different brain systems,
including the cerebral cortex, hippocampus, and olfactory bulb.
Gamma activity can exist in transient and persistent forms.
Transient gamma oscillations can be induced by tetanic stim-
ulation of the hippocampus, lasting hundreds of milliseconds
(Traub et al. 1996b; Whittington et al. 1997); both fast-spiking
INs and PY cells fire at the population frequency. Persistent
gamma activity is found in CA3 (Fisahn et al. 1998) and
neocortex (Buhl et al. 1998); this form of gamma can be
induced by bath application of carbachol or kainate and last
from minutes to hours. During persistent gamma activity, INs
fire at every cycle or every two cycle, whereas PY cells fire at
much lower frequencies. It was suggested that GABAergic
interactions in isolated IN networks might also lead to network
oscillation in the gamma frequency range (Traub et al. 1996a;
Wang and Buzsaki 1996).

At least two nonexclusive basic mechanisms have been
proposed to explain the origin of beta-gamma oscillations. One
of these emphasizes the extracortical origin of activities, while
the other emphasizes intracortical activity. Transient feed-
forward synchronization to high-frequency peripheral (retinal,
lemniscal or cerebellar) oscillations (Castelo-Branco et al.
1998; Timofeev and Steriade 1997) could impose the periph-
eral fast activities onto the thalamocortical system. Intracorti-
cal mechanisms include several possibilities. The first depends
on the intrinsic property of fast rhythmic-bursting (FRB) neu-
rons (Calvin and Sypert 1976; Gray and McCormick 1996;
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Steriade et al. 1998) to fire fast spike-bursts at frequencies in
the 20- to 60-Hz range. Synchronized activity in a population
of FRB neurons could, in principle, drive network oscillations
in gamma frequency range. The second intracortical mecha-
nism of gamma activity generation depends on the activity of
inhibitory INs as described both in vitro and in computational
models (Borgers and Kopell 2003; Lytton and Sejnowski 1991;
Traub et al. 1996b, 1997–1999). Transitions between gamma
and beta oscillations were simulated by alternating excitatory
coupling between PY neurons and by changes in K� conduc-
tances (Kopell et al. 2000; Traub et al. 1999). Last, the role of
gap junctions between axons of PY cells in generating gamma
oscillation was proposed (Traub et al. 2000). In this model,
spontaneous spiking activity in PY cell axons was critical for
persistent gamma oscillations. A transition from the asynchro-
nous network state to persistent gamma oscillations, triggered
by an increase in the excitability of PY neurons, was later
described in a simplified network model with all-to-all connec-
tivity (Borgers et al. 2005).

Synchronization properties of gamma oscillations

Cortical gamma oscillations may become synchronized
within a few milliseconds over distances of up to a few
millimeters (Gray et al. 1989). It remains a mystery how
long-range synchronization of gamma (20–80 Hz) activity is
achieved in systems with a limited speed of spike propagation
along axonal collaterals and synaptic delays. In this study using
in vivo recordings and large-scale cortical network models, we
reveal a critical role played by the network geometry in

achieving precise long-range synchronization in the gamma
frequency band. In agreement with previous studies (Borgers
and Kopell 2003; Lytton and Sejnowski 1991; Traub et al.
1996b, 1997–1999), gamma oscillations in our model were
mediated by feedback inhibition from local GABAergic INs.
The strength of the excitatory input from PY neurons to
inhibitory INs defines the synchronization mode. A weak
excitatory input requires cooperative activity in many PY cells
to trigger IN spikes. Therefore many PY cells spike at each
cycle of gamma oscillations as observed during transient
gamma oscillations (Traub et al. 1996b; Whittington et al.
1997). Increasing the strength of excitatory coupling between
PY cells and INs reduces the size of the PY cell population
required to spike together to maintain IN activity. This leads to
another mode when each PY cell spikes only once over many
cycles—a regime that is reminiscent of persistent gamma
activity (Buhl et al. 1998; Fisahn et al. 1998).

One of the most surprising findings, however, was the
dramatic difference in the synchronization properties of
gamma oscillations produced by 1D and 2D networks of
neurons. In a 1D system (a chain of neurons), a relatively small
(compared with the network size) synaptic footprint and syn-
aptic delays created a poorly synchronized oscillatory state
characterized by localized waves of gamma activity; a phase
shift between local field oscillations in remote network sites
achieved tens of milliseconds. When this network was ex-
tended to the second dimension, a highly synchronized net-
work state was established although the synaptic connectivity
remained localized. Variations of the system size revealed a
critical point—when the network size became less than one
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synaptic footprint in one spatial dimension, the highly synchro-
nized network state disappeared. We concluded that the pres-
ence of multiple pathways that connect any two remote sites of
a 2D network model provide stability against the onset of local
phase distortions—the same distortions that can effectively
destroy long-range synchrony in a 1D system.

These results are obtained using a simplified model of the
cortical network that contained only two classes of neurons
described using reduced models. To define a direct and com-
plete link between the reduced model parameters and the
physiological properties of a biological neuron is rather diffi-
cult. Therefore as with any simplified model, some specific
patterns of the network behavior may depend on the model
design. To ensure that our main results are generic, we tested
different network models and found that the connectivity
patterns and the size of the synaptic footprint only produced a
minor effect on the network synchronization properties. The
synchrony sustained synaptic delays up to 3–4 ms reducing
gradually as the synaptic delays further increased. The syn-
chrony also remained after we included inhibitory connections
between INs (IN-IN) with the same maximal strength as IN-PY
connections. Finally, we tested the effect of synaptic depres-
sion in lateral excitatory connections between PY neurons and
found no significant difference on the dynamics of synchroni-
zation. Thus our main prediction, that the network dimension-
ality plays a critical role in network synchronization, can be
generalized beyond the specific class of models that we used in
this study. While our results may seem less surprising from an
experimental perspective, a majority of existing computer
models utilize a 1D geometry that, as shown here, may be
insufficient to capture important properties of complex brain
dynamics.

These theoretical results were observed in in vivo recordings
from an isolated cortical slab. In a slab, the transition to an
active network state was characterized by wave propagation,
suggesting the predominance of local synaptic connectivity.
On the other hand, fast gamma range oscillations observed
during the active state were perfectly synchronized. Due to the
slab shape and size (�8–10 mm long and 5–6 mm wide), 2D
connectivity structure was preserved in this preparation and
was responsible for synchronization of gamma range activity.
Our study predicts that neural structures that are relatively
homogeneous in the 2D plane, with local synaptic connectivity
(as seen in many cortical areas), are able to display large-scale
synchronous oscillations despite the limited speed of spike
propagation along axonal collaterals and synaptic delays.

Role of network topology for synchronization

Recently studies of the role of the network topology in the
onset and persistence of synchrony have become an area of
significant interest (Restrepo et al. 2004a,b). Previous model-
ing studies (Lago-Fernandez et al. 2000) show that in a net-
work of Hodgkin-Huxley neurons, a random topology of the
network facilitated the onset of synchronization. In small-
world networks (Watts and Strogatz 1998), the onset of syn-
chronization was fast and led to coherent oscillations. Both
random and small-world networks contain long-range connec-
tions that promote long-range and global synchrony. As was
shown in Masuda and Aihara (2004), neurons tended to form
local clusters with precise synchronization in regular lattices

while staying globally asynchronous. As the regular lattice is
randomly rewired to form a small-world network, the cooper-
ation of global connections and the effect of local clustering
forces synchrony among remote neuronal groups receiving
coherent inputs (Masuda and Aihara 2004). The role of con-
nectivity in the randomly rewired networks in formation of
large-scale synchronization were considered as possible mech-
anisms mediating synchronization during seizures (Percha
et al. 2005). The present study demonstrates that even in the
absence of long-range connections, precise long-range syn-
chronization of network oscillations can be achieved in a large
population of neurons organized in the form of a 2D spatial
structure.

Conclusion

Stimulus-evoked neuronal oscillations have been found in a
variety of neuronal systems (Adrian 1950; Gray et al. 1989;
Hubel and Wiesel 1965). Numerous theoretical studies have
explored mechanisms and synchronization properties of neu-
ronal oscillations. However, to date, a majority of these studies
have explored network models with only one spatial dimension
and local spatial connectivity or scale-free (all-to-all con-
nected) networks. Our study suggests that using network mod-
els with two spatial dimensions is critical in capturing impor-
tant synchronization properties of real biological systems. An
intrinsic property of 2D networks [i.e., a large number of
independent pathways (synaptic chains) connecting any 2 net-
work sites] dramatically increases the stability and precision of
global synchrony in 2D network models in comparison to their
1D counterparts. In a more general sense, in 2D networks the
stability of a spatially homogeneous solution is maintained
over a much broader range of network parameters compared
with a 1D system. In contrast to 1D network models, this
region of stability in 2D networks overlaps with the parameter
regime (network states) where gamma oscillations exist, thus
guaranteeing precise long-range synchronization of fast gamma
range activity as observed experimentally.

G R A N T S

This work was supported by National Institutes of Health grants to M.
Bazhenov and to M. Bazhenov and I. Timofeev and funding from Canadian
Institutes of Health Research and Natural Science and Engineering Research
Council of Canada to I. Timofeev. I. Timofeev is a Canadian Institutes of
Health Research scholar.

R E F E R E N C E S

Adrian ED. The electrical activity of the mammalian olfactory bulb. Electro-
encephalogr Clin Neurophysiol 2: 377–388, 1950.

Assisi C, Stopfer M, Laurent G, Bazhenov M. Adaptive regulation of
sparseness by feedforward inhibition. Nat Neurosci 10: 1176–1184, 2007.

Axmacher N, Mormann F, G. F, Cohen MX, Elger CE, Fell J. Sustained
neural activity patterns during working memory in the human medial
temporal lobe. J Neurosci 27: 7807–7816, 2007.

Bazhenov M, Rulkov NF, Fellous J-M, Timofeev I. Role of network
dynamics in shaping spike timing reliability. Phys Rev E Stat Nonlin Soft
Matter Phys 041903, 2005.

Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HD,
Sejnowski TJ, Laurent G. Model of transient oscillatory synchronization
in the locust antennal lobe. Neuron 30: 553–567, 2001.

Borg-Graham LJ, Monier C, Fregnac Y. Visual input evokes transient and
strong shunting inhibition in visual cortical neurons. Nature 393: 369–373,
1998.

Borgers C, Epstein S, Kopell NJ. Background gamma rhythmicity and
attention in cortical local circuits: a computational study. Proc Natl Acad Sci
USA 102: 7002–7007, 2005.

1573SYNCHRONIZATION OF FAST CORTICAL OSCILLATIONS

J Neurophysiol • VOL 100 • SEPTEMBER 2008 • www.jn.org

 on S
eptem

ber 22, 2008 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


Borgers C, Kopell N. Synchronization in networks of excitatory and inhibi-
tory neurons with sparse, random connectivity. Neural Comput 15: 509–
538, 2003.

Bouyer JJ, Montaron MF, Rougeul A. Fast fronto-parietal rhythms during
combined focused attentive behavior and immobility in cat: cortical and
thalamic localozations. Electroencephalogr Clin Neurophsysiol 51: 244–
252, 1981.

Bressler SL. The gamma wave: a cortical information carrier? Trends Neu-
rosci 13: 161–162, 1990.

Brunel N, Wang XJ. What determines the frequency of fast network oscil-
lations with irregular neural discharges? I. Synaptic dynamics and excita-
tion-inhibition balance. J Neurophysiol 90: 415–430, 2003.

Buhl EH, Tamas G, Fisahn A. Cholinergic activation and tonic excitation
induce persistent gamma oscillations in mouse somatosensory cortex in
vitro. J Physiol 513: 117–126, 1998.

Calvin WH, Sypert GW. Fast and slow pyramidal tract neurons: an intracel-
lular analysis of their contrasting repetitive firing properties in the cat.
J Neurophysiol 39: 420–434, 1976.

Castelo-Branco M, Neuenschwander S, Singer W. Synchronization of visual
responses between the cortex, lateral geniculate nucleus, and retina in the
anesthetized cat. J Neurosci 18: 6395–6410, 1998.

Crochet S, Chauvette S, Boucetta S, Timofeev I. Modulation of synaptic
transmission in neocortex by network activities. Eur J Neurosci 21: 1030–
1044, 2005.

Desmedt JE, Tomberg C. Transient phase-locking of 40 Hz electrical oscil-
lations in prefrontal and parietal human cortex reflects the process of
conscious somatic perception. Neurosci Lett 168: 126–129, 1994.

Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck
HJ. Coherent oscillations: a mechanism of feature linking in the visual
cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern
60: 121–130, 1988.

Eckhorn R, Frien A, Bauer R, Woelbern T, Kehr H. High frequency
(60–90 Hz) oscillations in primary visual cortex of awake monkey. Neuro-
report 4: 243–246, 1993.

Engel AK, Kreiter AK, Konig P, Singer W. Synchronization of oscillatory
neuronal responses between striate and extrastriate visual cortical areas of
the cat. Proc Natl Acad Sci USA 88: 6048–6052, 1991.

Fisahn A, Pike FG, Buhl EH, Paulsen O. Cholinergic induction of network
oscillations at 40 Hz in the hippocampus in vitro. Nature 394: 186–189,
1998.

Freeman WJ. The physiology of perception. Sci Am 264: 78–85, 1991.
Frien A, Eckhorn R, Bauer R, Woelbern T, Kehr H. Stimulus-specific fast

oscillations at zero phase between visual areas V1 and V2 of awake monkey.
Neuroreport 5: 2273–2277, 1994.

Gray CM, Konig P, Engel AK, Singer W. Oscillatory responses in cat visual
cortex exhibit inter-columnar synchronization which reflects global stimulus
properties. Nature 338: 334–337, 1989.

Gray CM, McCormick DA. Chattering cells: superficial pyramidal neurons
contributing to the generation of synchronous oscillations in the visual
cortex. Science 274: 109–113, 1996.

Hill S, Tononi G. Modeling sleep and wakefulness in the thalamocortical
system. J Neurophysiol 93: 1671–1698, 2005.

Hirsch JA, Alonso JM, Reid RC, Martinez LM. Synaptic integration in
striate cortical simple cells. J Neurosci 18: 9517–9528, 1998.

Hubel DH, Wiesel TN. Binocular interaction in striate cortex of kittens reared
with artificial squint. J Neurophysiol 28: 1041–1059, 1965.

Joliot M, Ribary U, Llinas R. Human oscillatory brain activity near 40 Hz
coexists with cognitive temporal binding. Proc Natl Acad Sci USA 91:
11748–11751, 1994.

Kopell N, Ermentrout GB, Whittington MA, Traub RD. Gamma rhythms
and beta rhythms have different synchronization properties. Proc Natl Acad
Sci USA 97: 1867–1872, 2000.

Kreiter AK, Singer W. Oscillatory neuronal responses in the visual cortex of
the awake macaque monkey. Eur J Neurosci 4: 369–375, 1992.

Lago-Fernandez LF, Huerta R, Corbacho F, Siguenza JA. Fast response
and temporal coherent oscillations in small-world networks. Phys Rev Lett
84: 2758–2761, 2000.

Llinas R, Ribary U. Coherent 40-Hz oscillation characterizes dream state in
humans. Proc Natl Acad Sci USA 90: 2078–2081, 1993.

Lytton WW, Sejnowski TJ. Simulations of cortical pyramidal neurons
synchronized by inhibitory interneurons. J Neurophysiol 66: 1059–1079,
1991.

Masuda N, Aihara K. Global and local synchrony of coupled neurons in
small-world networks. Biol Cybern 90: 302–309, 2004.

Murakoshi T, Guo JZ, Ichinose T. Electrophysiological identification of
horizontal synaptic connections in rat visual cortex in vitro. Neurosci Lett
163: 211–214, 1993.

Murthy VN, Fetz EE. Coherent 25- to 35-Hz oscillations in the sensorimotor
cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89: 5670–
5674, 1992.

Noda H, Adey WR. Firing of neuron pairs in cat association cortex during
sleep and wakefulness. J Neurophysiol 33: 672–684, 1970.

Percha B, Dzakpasu R, Zochowski M, Parent J. Transition from local to
global phase synchrony in small world neural network and its possible
implications for epilepsy. Phys Rev E Stat Nonlin Soft Matter Phys 72:
031909, 2005.

Pfurtscheller G, Neuper C. Simultaneous EEG 10 Hz desynchronization and
40 Hz synchronization during finger movements. Neuroreport 3: 1057–
1060, 1992.

Restrepo JG, Ott E, Hunt BR. Desynchronization waves and localized
instabilities in oscillator arrays. Phys Rev Lett 93: 114101, 2004a.

Restrepo JG, Ott E, Hunt BR. Spatial patterns of desynchronization bursts in
networks. Phys Rev E Stat Nonlin Soft Matter Phys 69: 066215, 2004b.

Rougeul-Buser A, Bouyer JJ, Buser P. From attentiveness to sleep. A
topographical analysis of localized “synchronized” activities on the cortex
of normal cat and monkey. Acta Neurobiol Exp 35: 805–819, 1975.

Rulkov NF. Modeling of spiking-bursting neural behavior using two-
dimensional map. Phys Rev E Stat Nonlin Soft Matter Phys 65: 041922,
2002.

Rulkov NF, Timofeev I, Bazhenov M. Oscillations in large-scale cortical
networks: map-based model. J Comput Neurosci 17: 203–223, 2004.

Sheer DE. Focused arousal and the cognitive 40-Hz event-related potentials:
differential diagnosis of Alzheimer’s disease. Prog Clin Biol Res 317:
79–94, 1989.

Singer W, Gray CM. Visual feature integration and the temporal correlation
hypothesis. Annu Rev Neurosci 18: 555–586, 1995.

Steriade M, Amzica F, Contreras D. Synchronization of fast (30–40 Hz)
spontaneous cortical rhythms during brain activation. J Neurosci 16: 392–
417, 1996a.

Steriade M, Contreras D, Amzica F, Timofeev I. Synchronization of fast
(30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical
networks. J Neurosci 16: 2788–2808, 1996b.
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