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PACS. 87.22As – General theory and phenomenology.

Abstract. – We investigated different regimes of synchronization in large lattices of chaotic
spiking-bursting neurons. The lattices exhibit the following features: developed spatio-temporal
disorder with no synchronization; spatial clusters of bursting synchronization; homogeneous
bursting synchronization; and complete chaotic synchronization. We observed a bistable syn-
chronization phenomenon in a wide region of the control parameter space. The bistability exists
for homogeneous bursting synchronization with long-range correlation and spatial clusters of
partial synchronization. The bistable regime appears in lattices with a size larger than the
space-scale of these clusters.

Introduction. – The analysis of the behavior of large assemblies of chaotic elements has
been the subject of recent investigations, and is of interest both from the fundamental [1-5]
and modeling points of view [6-9]. In particular, a network of chaotic elements is currently a
very popular ingredient of information processing [7].

We report in this letter on the collective dynamics of chaotic neurons with local interactions.
Recent work [3-6] indicates that such lattices often exhibit “non-trivial” cooperative behavior
demonstrating a rich variety of phase transitions. Such behavior is “non-trivial” because the
chaotic dynamics of these lattices with short-scale interaction must exhibit extensive chaos: the
number of Lyapunov exponents increases with the size of the lattice (see, for example, [1, 2]).
Actually, the cooperative behavior of chaotic lattices depends strongly on the strength of the
local connection, variations of which reveal a rich diversity of synchronization.

The model. – The lattice is made of non-identical Hindmarsh-Rose neurons [10] placed ran-
domly inside the chaotic regime. Each element is electrically coupled to its nearest neighbors.
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Fig. 1. – Average activity and membrane potential for a lattice of 100× 100 Hindmarsh-Rose models
with (a) ε = 0.04, (b) ε = 0.4, and (c) ε = 230.The membrane potential, x, of 4 different units chosen
at random locations in the 100× 100 lattice with (a′) ε = 0.04, (b′) ε = 0.4, and (c′) ε = 230.

The system is described by the following set of coupled ordinary differential equations:

dxij
dt

= yij + 3x2
ij − x

3
ij − zij + Iij − ε(4xij − xi+1,j − xi−1,j − xi,j+1 − xi,j−1), (1)

dyij
dt

= 1− 5x2
ij − yij , (2)

dzij
dt

= −rzij + rS(xij + 1.6), (3)

for which i, j = 1, . . . , N , r = 0.0021, Iij = 3.281± 0.05 and S = 4. The modifiable parameter
is ε, the strength of the electrical coupling. For the periodic boundary conditions used in
this investigation, the system was integrated using a Runge-Kutta 6(5) scheme with variable
time step based on [11]. The absolute error was 10−15 and the relative error was 10−6 in
all the calculations presented in this article. The code to integrate this lattice is available at
http://inls.ucsd.edu/˜ huerta.

The dynamics of the Hindmarsh-Rose model is characterized by two very different oscillation
time scales, as are living bursting neurons. The subsystem (xij , yij) is responsible for the fast
oscillations (the spikes) and the slow subsystem is carried by zij and xij . The fast subsystem
is placed nearby the homoclinic bifurcation and, together with the slow subsystem, generates
chaotic oscillations [12,13].

To study the global behavior of the lattice, besides the visual exploration of results, we use
two quantities: the average activity of the lattice 〈x(t)〉 = (1/N2)

∑N
i,j=1 xij(t) to identify the
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Fig. 2. – (a) Variance of the oscillations for decreasing values (dotted line) and increasing values (solid
line) of ε for a lattice of 30 × 30 elements. (b) Bifurcation diagram between bursting and complete
synchronization solid line. The dotted line indicates the upper boundary of bistability between partial
synchronization and bursting synchronization. The lower line parallel to the x-axis indicates the
boundary between no synchronization and the bistability region.

temporal characteristics; and the spatial correlation function

C(r) =

〈
1

Nη(r)

∑
η(r)

(xη(r)(t)− 〈xη(r)〉t)(xη0
(t)− 〈xη

0
〉t)

(xη
0
(t)− 〈xη

0
〉t)2

〉
t

,

with η(r) = {(i, j) : (i − N/2)2 + (j − N/2)2 = r2; i, j = 1 . . .N} and η0 = (N/2, N/2),
where Nη(r) is the number of points on the circle of radius r.

The average activity is a valid quantity to distinguish between the different types of global
synchronization. In order to clarify the meaning of the average activity and to show how it
may be used to distinguish between synchronized and unsynchronized states, let us consider
a specific case when the oscillations in all units are close to periodic xij(t) ≈ f(t + φij),
where φij ∈ [0, T ] are the time lags of the oscillators. The average activity of the simplified

system is given by 〈x(t)〉 = (1/N2)
∑N
i,j=1 f(t + φij), which, in the limit N → ∞ and for

periodic f(t), can be expressed as 〈x(t)〉 =
∫ T

0 p(Φ)f(t+ Φ)dΦ, where p(Φ) is the probability
distribution of the time lags of the oscillators in the ensemble. When the elements are phase
locked, p(Φ) = δ(Φ− Φ0), so they are completely synchronized, and 〈x(t)〉 = f(t). When the
probability distribution is uniform in the interval [0, T ], then the ensemble is unsynchronized,

and 〈x(t)〉 = (1/T )
∫ T
0 f(Φ)dΦ = constant.

Synchronization. – We found three main regimes of global synchronization: spiking
(complete), partial (clustering), and bursting synchronization. In fig. 1 we plot the average
activity for non-synchronization and for bursting and spiking synchronization for a layer of
100×100 elements. When there is no synchronization the average activity remains very close to
a constant value as shown in fig. 1a. Figure 1b gives a typical case of bursting synchronization
where the average activity is periodic and nearly constant on top of each burst. This means that
the spikes are completely unsynchronized. In fig. 1c an example of complete synchronization is
displayed, where the behavior of one single unit is identical to the average activity of the whole
lattice. Figure 1a′, b′ and c′ show the time series of different units chosen at random locations
in the lattice. The case of partial synchronization that will be explained in more detail in the
following sections typically has an average activity with oscillations of an amplitude of 0.2 and
the time series of nearby units are similar to fig. 1b′, whereas for far away neurons the time
traces are uncorrelated as in fig. 1a′.
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Fig. 3. – First column: three snapshots of the bursting synchronization regime in a 100× 100 lattice
for ε = 0.5. The first snapshot shows the beginning of the burst where the turbulent behavior is
carried by the spiking activity. The second one shows the end of the burst where there are less spikes
fired. And, finally, the third one represent the latency state at the bottom of the bursts. Second
and third column: two different patterns, which are periodic on time, in the partial synchronization
regime for ε = 0.5. Fourth column: partial synchronization for ε = 1.5. The solid arrows indicate the
direction of time.

Bifurcations and bistability. – The quantity that we will use to discriminate between the
different types of synchronization will be the average activity oscillation amplitude given by

σ2(ε) =
1

T

∫ T

0

(〈〈xε〉ij〉t − 〈xε(t)〉ij)
2

dt ,

where 〈xε(t)〉ij is the average activity of the lattice for a given value of the electrical connec-
tion ε. In fig. 2a we plot σ(ε) vs. the strength of the coupling for a lattice of 30× 30 elements.
Two regions can be identified: one of partial (cluster) synchronization with σ(ε) values ranging
from 0.2 to 0.3, and another with bursting synchronization with larger oscillations (see fig. 1).
The region in which we are mainly interested is the bistable region where partial synchroniza-
tion and bursting synchronization coexist. This region can be identified by the presence of
the hysteresis loop for increasing and decreasing values of ε. The magnitude of the pulsations
of the average activity provide a means for differentiating between different regimes of global
and partial synchronization.

How is the synchronization affected by the increasing size of the lattice? Figure 2b exhibits
the values for which the bifurcation from bursting to complete synchronization takes place. It
has a strong linear dependence on the size of the lattice, εc = αN2 with α = 0.0247± 10−4,
which was fitted till at least a lattice of 100 × 100 (data not shown). The most interesting
region is the bistable one where partial synchronization and bursting synchronization coexist
as shown in fig. 2. The dotted line in fig. 2b indicating the upper boundary of bistability
has a strong linear dependence on lattice size (like complete bifurcation between bursting and
complete synchronization) and the solid line parallel to the x-axis shows the lower boundary
between the bistable region and no-synchronization. This lower bifurcation line exhibits only
a very weak dependence on the size of the lattice. It is remarkable that the bifurcation point
from bursting synchronization to non-synchronization is not a scalable property of the lattice.

A few snapshots of the activity of a lattice of 100× 100 elements in the bistable region are
given in fig. 3. The first column has a sequence of three snapshots corresponding to a bursting
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Fig. 4. – Spatial correlation calculated in a lattice of 70 × 70 elements for an unsynchronized state
(dotted line), bursting synchronization (solid thick line), and partial synchronization for ε = 0.2 and
ε = 1.5.

synchronization, where the spikes are not synchronized. In the second and third columns we
present two different periodic patterns for different initial conditions corresponding to partial
synchronization. These oscillating patterns are stable and have a characteristic space scale
from 10 to 20 elements. The volume of the boundary of attraction for these periodic patterns
is very small. The best way to reach them is moving ε slowly from 0 to any point in the region
of bistability. The right column of fig. 3 shows another periodic pattern for ε = 1.5. Increasing
the coupling strength between the elements leads to the growth of the space scale in the lattice.
In fig. 4 the spatial correlation that distinguishes between non-synchronization, bursting, and
partial (cluster) synchronization is presented. The space scale for partial synchronization is of
the order of 10 elements. This explains why bistability for lattices smaller than 16×16 has not
been observed heretofore. The clusters of partial synchronization with periodic synchronization
is reminiscent of spatio-temporal patterns on the lattices of coupled periodic oscillators: the
discrete variant of the Ginzburg-Landau model [14].

Conclusion. – In spite of the heterogeneous and chaotic nature of the individual elements,
the lattices of spiking-bursting neurons coupled diffusively reveal unexpected spatio-temporal
patterns: clusters of synchronization of slow dynamics. The boundaries of the clusters are
the fronts of phase triggering between in-phase and out-of phase synchronization. These
contrasting patterns reproduce themselves periodically in time. This regime coexists, in control
parameter space, within the regime of bursting synchronization that is homogeneous in space
and periodic in time. Depending on the initial conditions, one of these regimes is realized.

The presence of different patterns of synchronization for different initial conditions illus-
trates the rich possibility of this lattice to store the information coded in snapshots. The
next feature to understand is how different patterns are loaded and retrieved as a function of
external input and local interconnectivity. In spite of the obvious fact that the present model
is an oversimplified description of the cooperative behavior of real cortex neural assemblies,
bistability and cluster synchronization must be an important aspect of more complex networks
with finite-scale interactions. It is important to notice that similar patterns have been reported
in vivo in experiments with turtles using optical images [15], hallucinations [16], and models
of cortical tissue [17]. The latest detailed investigation can be found in [18].
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