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Distributed kinetic models, especially the diffusion-approximation equations, are widely employed for analyzing reactor 

dynamics. Equations of this type are used for analyzing the stability of the stationary state, investigating the boundedness of 

the solutions, calculating the self-excited oscillations of the reactor power, etc. Among these problems the question of the 

boundedness of reactor power bursts is of practical importance. 

It is shown in [1, 2] that when reactor control is lost at low power the change in the neutron flux can acquire the 

character of a burst, accompanied by a significant release of heat in the active zone. These processes were investigated in [1, 

2] by the method of differential inequalities based on a lumped model of the kinetics. In [3] the method of separation of motions 

into fast and slow, followed by analysis of the geometry of the surface of the slow motions, was employed for these purposes. 

We consider below the nonlinear equation of single-group diffusion approximation 

6 
O* M2vZQb + ~f(G, t3ko) + 2 fll(dp i - ~);  -~-= 

i=1 

°ePi = ai(¢ - ¢i), i = 1, 2, 6; (1) 
0T "-' 

Ox = A x  + ad#, cr = brx, 
Ot 

with the boundary condition 

q) + a(Vq5, n) = 0 (2) 

on P. Here P is a closed convex surface, bounding the volume of the active zone f~; A is a matrix whose coefficients depend 

on r (the spectrum of A lies to the left of the half-plane); a is a vector whose components depend on r; and, r is the radius 

vector. Physically, I, = cb(r, t) is the neutron flux (in relative units; f(a, 8/%) = k~ - 1; k~ is the multiplication factor; X i 

and/3 i are the decay constant and fraction of radiators of the i-th group of delayed neutrons, respectively; l is the lifetime of 

prompt neutrons; M is the migration length; and, 6k o is a parameter. 

Let the transfer coefficient X(P) = bT(p 1 - A)-1 a > 0 for r E f2. We choose the function f(o, 6ko) in the form 

/(or, ~kO) = c~k 0 + 4(SkACr(1 - a) (3) 

and we show that bounded power bursts can occur in the system (1)-(3). 

Bifurcation Diagram. The dependence of the solutions (in particular, the stationary solutions) on a parameter is called 

a bifurcation diagram. For the system (1)-(3) the main parameter determining the behavior of the system is 6ko, and the 

bifurcation diagram of stationary solutions is determined by the dependence of a or I, on 6/% (control parameter). 

In [2] it was established that the system of equations of reactor kinetics can have a solution of the burst type, if its 

bifurcation diagram has the form shown qualitatively in Fig. 1. We shall investigate the type of bifurcation diagram of the 

stationary solutions for the system (1)-(3). 

The stationary solutions of the system (1)-(3) are found from the nonlinear boundary-value problem 

M2V2q) + (I)f(x(O)* , C~kO) = O; 

a = X(0)*, * = *i ,  (4) 

Scientific-Research Institute of Mechanics, Nizhegorod State University. Translated from Atomnaya l~nergiya, Vol. 

74, No. 6, pp. 466-472, June, 1993. Original article submitted December 23, 1992. 

1063-4258/93/7406-0433512.50 o1993 Plenum Publishing Corporation 433 



where X(0) = - b  T A-1 a > 0, and the boundary conditions are determined by the expressio n (2). 

In order to investigate the stability of the zeroth solution we associate to the boundary-value problem (4) the eigenvalue 

problem of the linearized operator 

M272~ , + (3k 0 - fl)g, + Y fli~i = lp~; 

'~i(~ - ~i) = P~i; 
A x  + a ~ =  tra2 

( 5 )  

with the boundary condition (2), if we set in it q5 _- ¢. It is easy to show that the spectrum of the operator (5) for 6k o < 6/Co 

lies in the left-hand half-plane. At the point ~3k o = ~/~o the eigenvalue Pl = 0, and therefore the stationary solution q5 -- 0 
becomes unstable. 

We shall seek a nontrivial solution of Eq. (4) in a neighborhood of the point 6k o U~ o. Confining our attention in Eq. 
(4) to infinitesimals of second order, we have 

M2V2cI } "~ cI}(d~k 0 + 4~kA~(0)dP ) = 0 

with the boundary condition (2). We set • = C,~l, where ¢1 is the eigenfunction of the operator (5) that corresponds to the 

eigenvalue Ps, and from the condition that the residual be orthogonal to the function ¢1 we find 

) 
C lpl + f l - - ~ , ~ t i + P l  ) f~O~df~+C24~kAX(O)fw3df~=O'a a 

Besides the zero solution this equation has the solution 

;ti~ i ] 
lp 1 + fl -- 7. •i + Pl ) f ~2d£-'2 

C = -  
4~kAZ(0 ) f ~p~ df~ 

Since q~ > 0, a nontrivial solution exists for c3k o < U~ o. 

We now show that for 6k o less than 6ko* the system (1)-(3) does not have nontrivial stationary solutions. We employ 

the boundedness of the function ~(a) = 46k,4cr(1 - or) _< 6kA, and we Consider the linear system 

6 
l-~-Otl) = M272 ~ + ¢b(cSk 0 + CSkA ) + E fli(4p i -- ~); 

i=[ 
Oq~ i 

Ot = 2i(q~ - q) i ) ,  i = 1, 2 . . . . .  6; 

0 x  
= A x  + adp, o = brx. 

Ot 

(6) 

For 5k o < ~ko* = 61~ - dk A the spectrum of the operator (6) lies in the left-hand half-plane. Since the operator of displacement 

along trajectories for this system is monotonic [4], all solutions of the system (1) are bounded from above by the solutions of 

the system (6) and therefore as t --- oo they approach ~b --- 0. 

Finally, we prove that all solutions of Eqs. (1)-(3) for physically realizable initial conditions and finite values of 5k 0 

are globally bounded. It is easy to show that feedback in the system (1)-(3) is sublinear [5], since there exist positive constants 
c~ and 3' for which 

/(o,  ko) -< - (7) 

and, in addition, the transfer factor X(P) for all co E [0, oo] satisfies Welton's condition 

- y R e x ( # )  < 0. (8) 

When the inequalities (7) and (8) are satisfied, the solutions of the system (1)-(3) are bounded [5]. 
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Fig. 1, Qualitative form of the bifurcation 

diagram. 

Combining the results of  our analysis of the system (1)-(3), it can be concluded that the bifurcation diagram of the 

stationary solutions does indeed have the form displayed qualitatively in Fig. 1, and therefore the system (1)-(3) has a solution 

of the burst type. 

Es t imate  of  the Solutions f rom Below. When control is lost at low power, the reactor cannot remain long near an 

unstable state of  equilibrium, and the image point on the bifurcation diagram will move along the vertical straight line ~k o = 

const (see Fig. 1), passing through the corresponding states of equilibrium, upwards or downwards depending on the initial 

perturbation. The horizontal distance from a point on the straight line ~k o = const up to the bifurcation diagram will equal the 

reactivity of  the reactor for fixed a. If, in addition, 6kA > /3 and 6k o = 0, then the transient process has a slow initial stage, 

which transforms into a fast stage on instantaneous kinetics. 

We shall study fast processes, in whose analysis the nonlinear feedback (3) can be replaced by linear feedback f(c,, 3ko) 

= 6ko - 3'e, bounding it from above. In order to substantiate this substitution, we point out that the nonlinear section of the 

bifurcation diagram corresponding to small values of  ~ (or ¢~) plays a significant role at the slow initial stage of the process 

and is insignificant for describing processes on instantaneous kinetics. We shall now find the conditions under which on the 

solution starting in an arbitrarily small neighborhood of the state of equilibrium, ¢,(r, t) reaches a value not less than ¢'m, at 

some time t = T. 

We now consider the Lyapunov functional [1, 5] 

v =  f ~o lr~ + x ~ H x  df~, 

where H is a symmetric matrix; p is a positive number which we shall define below; ~ E C 1 on ~), ~, ~ 0 in [~ and satisfies 

the boundary condition ~ + a(V~,  n) = 0 on the boundary I'  of  the region fL 

In accordance with the system (1) the time derivative has the form dV/dt  = p V  + W, where 

W = f ~{M2V2~ - yo~  + [Ok 0 - G(p) ] - [x ' (ATH + H A  - pH)  x + 2a v H x ~  ]} df~; 
f~ 

Pfli 
a ( p )  = lp  + ~ - -  

p +2t[ 

(9) 

We now consider the auxiliary boundary-value problem for the function ~b 

vZ,p + ~ ,  = o (lo) 

with the boundary condition ~ + o~(V~,, n) = 0 for r E F. Multiplying Eq. (10) by ~ M  2 and combining it with the relation 

(9), we obtain 

W = f g~{ - yo~  + [6k 0 - 2M 2 - G(p) ] • - [xr(AVH + H A  - pH)  x + 2a T H x ~  ]} dfL 
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Fig. 2. Qualitative form of the set V > 0. 

Here we employed the relation 

f (~0vZ,I, - (I, VZ~o) a ~  = f [(VH, n),p - (Vw, '0 H 1 a s  = o. 
F 

Using the inequality q~ _ ~m, we obtain 

W ~- y 7.'{- 7 o ~  + P H2 - [x'( ATH + H A  - pH) x + 2arHxH ]} df~, 

where p > 0, ,I~p = 6k o - ~//2 _ a ( p ) .  

Next, using Yakubovich's  matrix inequalities [6], we arrive at the particular condition for determining p and the matrix 

equations for determining H: 

t 

- p H  + H A  + ATH = - ~ ggT; 

b 
Ha  + y ~ = - g ,  

a; 

where I is a unit matrix. 

Thus cI',n can be found from the inequalities 

HmP = ~k 0 - , tM 2 - G(p); 
p -- ~,Rex; to ~ [0, ¢o). 

(11) 

We arrive finally at the differential inequality dWdt  >_ pV ,  whence it follows that V(t) >_ V(O) exp (pt). The condition 

V(0) > 0 singles out of  the space of states the set of  initial conditions for which the solution grows without limit, while q~ _< 

~5 m. This means that there exists a time t = T at which $ _> (I'm. 

The possible values o f p  are found from the inequalities 0 _< G(p) _< ~3k o - XM 2. Since I X(p/2 + ioO I ~ 0 ,  as p 

oo, for large values of  6k o (when the range of possible values of p is large) q5 m is large. The region V > 0 is displayed 
qualitatively in Fig. 2. 

We now consider the simplest example of  feedback in order to illustrate the calculation of  I '  m. Using the expression 
(11) we have 

ak - , l M  2 - a(p)  
H,,, = ~ (p /2 )  
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Fig. 3. W(a) for i? < I7. (a) and the corre- 

sponding phase portrait of  the system (13) b). 

To each value o f p  satisfying the condition 0 _< G(p) _< ~k o - XM 2, there is associated a number q~m and a region in phase 

space. Among these values o f p  there is a value o f p  that gives to q~m a maximum value, which we designate by ~m' 

For definiteness, let X(P) = 1/(1 + Tp),  ~3k o = 5/3, T = 23, XM 2- = 1.5/3, and T = 10 sec. Evidently, G(p) _< /3 + 

lp, p = 3'/(1 + Tp/2) and therefore 

( • m _> 1 + 7" 

The maximum value of the right-hand side is reached for ll) = (6k o - XM 2 - 3 - 2l/7)/2.  For 1/3 = 10-2 sec and the other 

parameters having the values indicated above, ~m > 103/3" I f  T is set equal to 1 sec, then ~m will be smaller, but still large: 
~m > 102/3' 

Thus we have verified for the simplest example that in phase space there exists a region V > 0, adjoining the zero state 

of equilibrium, such that when the image point enters this region the neutron flux increases (with exponentp)  up to values many 
times greater than the stationary (nominal) value cI, = 1. 

Surface  of Slow Motions.  In [3] a method for separating motions into fast and slow was employed in order to 

investigate discontinuous solutions in the lumped model of reactor kinetics. We shall show that this approach can be extended 
to the case of  distributed models. 

In order to simplify the calculations we specify feedback by an equation of the form da/dt  = X(q5 - a), where 1/X is 

the heating time of the fuel tablets, and we describe the delayed neutrons by a single group with a time constant equal to the 

time constant of  heating of the fuel tablets (1/X i = 1/~, ~- 10 sec for oxide fuel). Then, eliminating I, and cI, i from the first 
equation of the system (1), we arrive at the following system: 

l Oa ~ a -- ~ V 2 a  
X ~7  + lo + ^ °  - ¼ f f(~, 6ko) d~ = y; 

0 

O Y = a.[(a, 6ko) + MZV2o ", 
Ot 

(12) 
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Fig. 4. Same as Fig. 3, but for IV > 17.. 

where 3 = ~2 3i, and the boundary conditions are determined by the expression (2), in which we must set a5 -_- a. In the 
2=1. 

system (12) the parameter l /X in front of the derivative is small, so that all motions in phase space can be divided into fast 

motions, occurring along the straight lines Y -- const, and slow motions, whose trajectories lie on the surface Y = F(a) .  Setting 

l /X = 0, we find the surface of slow motions 

, - -  

0 

We now consider the one-dimensional problem (172 "-~ 02/0X2). Using the expression (3) forfla,  6ko) , we obtain 

e ? a  , o ~ o a - 

dx2n - sa + -~- - -g- + Y = O, (13) 

where x n = x2-,/~kAYM2i s = (3 -- 6ko)146kA > 0; 17 = YX146k A. Integrating the condition (13), we arrive at the following 
equation: (1/2)(dcr/dxn) 2 + W(a)  = O, where W = - s ~ 2 / 2  + a3/6 - a4/12 + 17a. 

Figure 3 displays the qualitative form of the function W(a) for quite small values of 17 and the corresponding phase 

portrait of the system (13). As the parameter Y increases the states of equilibrium Po and P2 approach one another and for 

some I v = IV. they merge. The phase portrait of the system (13) for I 7 > IV. is displayed in Fig. 4. Only trajectories in the 

phase plane which satisfy the boundary conditions are physically meaningful. It is obvious that the separatrices of the saddles 

a l p l c  1 and a2P2c2 correspond to stationary soliton-like solutions of the initial system, determined on an infinite straight line. 

For a system given in a bounded region the trajectories L1, L 2, L 3 (see Fig. 3) correspond to soliton-type solutions. In addition, 

the larger the region, the closer the trajectories, satisfying the boundary conditions, are to the separatrices. 

Thus for 17 < 17, a system given in a finite region has three stationary solutions (L 1, L2, L3) the amplitudes of these 
solutions being significantly different. For 17 > 17. only the solution with the greatest amplitude remains. A similar scenario 

occurs as IV decreases (for IV = F** < 17, the states of equilibrium Po and P1 merge). On the basis of the theory of bifurcations 

(see, for example, [7]) and what we have said above it can be concluded that two stationary solutions (L 1 and L3) should be 

stable and the third solution (L2) should be unstable. 
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Thus a qualitative analysis shows that the surface of slow motions of the system (12) has points of a rbld-type 

catastrophe. As the system moves along the slow-motion surface (this corresponds to a change in I?) it can reach one such point, 
after which it hops abruptly out of the region where solutions corresponding to small heat release exist into the region where 
such solutions do not exist. This transition will correspond to rapid growth of heat release in the active zone, i.e., a burst. 
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