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SUMMARY

Neuronal networks exhibit a rich dynamical reper-
toire, a consequence of both the intrinsic properties
of neurons and the structure of the network. It has
been hypothesized that inhibitory interneurons
corral principal neurons into transiently synchronous
ensembles that encode sensory information and
subserve behavior. How does the structure of the
inhibitory network facilitate such spatiotemporal
patterning? We established a relationship between
an important structural property of a network, its
colorings, and the dynamics it constrains. Using
a model of the insect antennal lobe, we show that
our description allows the explicit identification of
the groups of inhibitory interneurons that switch,
during odor stimulation, between activity and
quiescence in a coordinated manner determined by
features of the network structure. This description
optimally matches the perspective of the down-
stream neurons looking for synchrony in ensembles
of presynaptic cells and allows a low-dimensional
description of seemingly complex high-dimensional
network activity.

INTRODUCTION

Coordinated spiking of neuronal populations underlies the

perception of sensory stimuli (Gray and Singer, 1989), the plan-

ning of movement (Bouyer et al., 1987), and the acquisition of

new memories (Cheng and Frank, 2008). A number of studies

have shown that such patterning, to a large extent, depends

on the temporal and the spatial distribution of inhibition (Buzsáki

and Chrobak, 1995). For example, in hippocampal networks,

GABAergic interneurons form the hubs of a network that selec-

tively synchronizes subpopulations of pyramidal cells (Bonifazi

et al., 2009). The back-and-forth interaction between inhibitory

granule cells and excitatory mitral cells in the mouse olfactory

bulb leads to synchronous spiking in mitral cells (Schoppa,

2006). Synchrony extends across mitral cells that are electrically

uncoupled and affiliated with different glomeruli. Feedback

inhibition mediated by local interneurons synchronizes cortical

pyramidal cells in the gamma frequency band underlying cogni-
tive processing and provides a mechanism for the temporal

binding of sensory stimuli (Joliot et al., 1994; Llinás and Ribary,

1993; Singer and Gray, 1995). In vertebrates (Grillner, 2003)

and invertebrates (Marder and Bucher, 2007), coordinated

movement is achieved by interneuron networks that work in

concert to generate appropriate phases of spiking in motor

neurons.

The antennal lobe (AL), the insect equivalent of the olfactory

bulb in mammals, provides an ideal system where the effects

of inhibitory networks can be examined. Local inhibitory inter-

neurons (LNs) extend extensive connections to each other and

excitatory projection neurons (PNs) in the AL (Leitch and Laurent,

1996). Odor-driven activity of PNs in the AL evolves over multiple

spatial and temporal scales (Laurent, 2002). The collective

spiking activity of PNs generates an oscillatory local field poten-

tial (LFP) (Laurent and Davidowitz, 1994). The composition of

synchronized groups of PNs contributing to the LFP oscillation

changes on a cycle-by-cycle basis (Laurent and Davidowitz,

1994; Laurent et al., 1996; Wehr and Laurent, 1996). PNs receive

input from local LNs. Blocking fast LN-mediated inhibition by the

application of the GABA-activated chloride channel blocker

picrotoxin leads to the desynchronization of PNs and conse-

quently abolishes the oscillatory output of the AL (Ito et al.,

2009; MacLeod and Laurent, 1996; Stopfer et al., 1997; Tanaka

et al., 2009). Since dynamic changes in collective PN activity

during odor stimulation exceed changes in input to the network,

they must be attributed to the network interactions within the AL

(Raman et al., 2010). Previously, we proposed that competitive

inhibitory interactions between LNs generate alternately spiking

groups of neurons. These groups entrain different populations of

PNs, shaping their spike timings andgenerating a spatiotemporal

representation of an odor (Bazhenov et al., 2001b). The basic

cause of transient synchrony in PNs, recovery from concerted

inhibition, is well understood in insect (MacLeod and Laurent,

1996; Stopfer et al., 1997) (Bazhenov et al., 2001b) and mamma-

lian (Schoppa, 2006) olfactory circuits. However, a clear relation-

ship between the global structure of the inhibitory network and

the collective dynamics of PNs and LNs is not known.

An understanding of structure-dynamics relationships in

a network is often challenging because of the formidable

dimensionality of the system and the inherent nonlinear

properties of neurons and synapses that constitute the network.

Recent approaches have been restricted to two broad classes

(Boccaletti et al., 2006). The first class examines complex

dynamics, albeit in relatively simple networks. These networks
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Figure 1. Clustering in Inhibitory Networks

as a Function of Graph Coloring

(A) A reciprocally connected pair of inhibitory

neurons is an example of a graph with chromatic

number two. Left traces: An alternating pattern of

bursts is generated in response to a constant

external stimulus to both neurons. A Ca2+-depen-

dent potassium current (shown in red) causes

spike frequency adaptation. Right traces: In the

absence of a Ca2+-dependent potassium current,

only one neuron produces spikes and the other

is quiescent. Blue trace at the bottom: Spike

frequency adaptation in a local inhibitory inter-

neuron recorded in vivo from locust AL.

(B) A coloring generated for a random network of

20 neurons with connection probability 0.5.

(C) A graph with chromatic number three and its

corresponding adjacency matrix.

(D) Raster plot showing the activity of a network of

30 neurons with chromatic number three. Ten

neurons are associated with each color.

(E) The role of Ca2+ concentration on the timing of

LN bursts. The bottom traces show the Ca2+

concentration in three LNs (top three traces) asso-

ciated with three different colors. The neuron with

the lowest concentration of Ca2+ tends to spike

first.
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(often consisting of a few [<10] neurons) (Shilnikov et al., 2008)

are designed to resemble the characteristic building blocks of

networks known as motifs that recur with considerable

frequency in neuroanatomical data sets (Milo et al., 2002; Sporns

et al., 2004; Sporns and Kötter, 2004). Another commonly

studied example of the same class is a large network with simple

connectivity (all-to-all, or nearest neighbor) that can also demon-

strate a rich repertoire of dynamical patterns (Assisi et al., 2005).

A second class of studies examines simple dynamics in

networks with arbitrarily complex topologies (Arenas et al.,

2008). These studies have been largely limited to the analysis

of the stability of completely synchronized states (Pecora and

Carroll, 1998) and have been applied to a variety of systems

(see Boccaletti et al., 2006 for a review).

Our approach is a departure from these two classes. Here we

establish a relationship between a structural property of the

network, its colorings, and the dynamics it constrains. Further-

more, we show that the description of network dynamics

based on its coloring comes with a fortuitous benefit. It helps

us define a low-dimensional space in which the seemingly high-

dimensional dynamics of networks of excitatory and inhibitory

neurons reliably forms a series of orthogonally propagating
374 Neuron 69, 373–386, January 27, 2011 ª2011 Elsevier Inc.
waves, a predictable and simple pattern

where synchronous ensembles of excit-

atory projecting cells are successively

recruited.

RESULTS

Dynamics of Inhibitory Networks
A ‘‘coloring’’ of a network (or graph) is an

assignment of colors to the nodes of the
graph so that nodes (such as neurons) that are directly con-

nected to each other are assigned different colors (see Supple-

mental Information for a detailed example). Graph coloring

problems first emerged as interesting mathematical curiosities

(Biggs et al., 1986; Kubale, 2004), but have since been applied

to resolving scheduling conflicts, reinterpreting the Sudoku

puzzle (Herzberg and Murty, 2007) and, most prominently,

coloring maps (see Appel and Haken, 1989 for a proof of the

famous four-color theorem; Appel and Haken, 1977 and Biggs

et al., 1986 describe the colorful history). We found that antago-

nistic interactions in a network of inhibitory neurons can be

usefully related to its coloring. To illustrate, consider the simplest

possible inhibitory network, one consisting of two reciprocally

connected inhibitory interneurons. Since these neurons are

directly connected to each other, by definition, we must assign

a different color to each neuron. A general property of such

a network is that neurons inhibiting each other via fast

GABAergic synapses tend to spike asynchronously. This simple

network may burst in rhythmic alternation (see Figure 1A) (Shpiro

et al., 2007), or act as a flip-flop (Kleinfeld et al., 1990; Lu et al.,

2006) (see Van Vreeswijk et al., 1994 for exceptions to the

desynchronizing effects of inhibition). Antagonistic interactions
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explain why only one neuron remains active at any given time.

But how does switching take place?

In addition to the fast timescale of spiking (�10s of millisec-

onds), responses of inhibitory interneurons in the locust AL can

vary on a slow timescale (�100ms) over which spiking frequency

gradually declines. As the example in Figure 1A shows, once

below a threshold frequency, the quiescent neuron was released

from inhibition and generated a burst of spikes that, in turn,

silenced the other neuron of the pair. In the absence of spike

frequency adaptation, one of the neurons remained in an active

state while the other was constantly inhibited (Figure 1A, right).

This slow timescale resulted from a hyperpolarizing Ca2+-depen-

dent potassium current (red trace) that was activated by Ca2+

spikes in the inhibitory neuron (see Supplemental Information)

(Bazhenov et al., 2001b). Spike frequency adaptation is common

in different classes of spiking interneurons (McCormick, 2004)

and may be achieved through a variety of mechanisms (Benda

and Herz, 2003).

In this two-neuron network, neurons associated with different

colors tend to spike in alternating bursts. In larger, more realistic

networks, we hypothesize that neurons associated with the

same color will not directly compete and, assuming they receive

similar external inputs, will tend to burst together. A simple

strategy to verify this hypothesis would be to generate a random

network, characterize its coloring, and compare the coloring with

the dynamics. However, this strategy is impractical for two

reasons. First, one would like to query the dynamics of the

network after systematically varying its coloring-based proper-

ties like the number of neurons associated with a particular color

or the number of colors. It is not clear how to achieve this with

a random network (Figure 1B). A second difficulty is to generate

all possible colorings of the network as the size of the network

grows. Thus, we chose instead to construct a set of networks

that each posses properties of interest. For example, to

construct a network with three colors, we generated three

groups of nodes and connected every pair belonging to different

groups. No within-group connections were implemented. The

resulting adjacency matrix consisted of diagonal blocks of zeros

with all other elements set to unity (Figure 1C). Our simulations of

activity in this network showed that neurons associated with the

same color tended to fire in synchronous bursts. The period

between bursts in one group was occupied by similar bursting

patterns generated by neurons associated with other colors

(Figure 1D). This simple model showed that the coloring of the

network was closely related to the dynamics of its constituent

neurons. The temporal sequence of these bursts can be deter-

mined by a number of factors. Asymmetries in the intrinsic

properties of individual LNs and directed connections between

neurons can ensure that specific sequences of spiking are stabi-

lized. In addition to changes in the intrinsic and synaptic param-

eters, a neuron’s Ca2+ concentration can also influence the

ordering of LN bursts (Ahn et al., 2010). The larger the Ca2+ level

in a cell, the less likely it is to generate a spike in the next cycle,

because of the negative impact of Ca2+-dependent potassium

currents. In Figure 1E note that the ordering of bursts in

a three-color network can be predicted by the level of Ca2+.

Network geometry also influenced other attributes of indi-

vidual bursts. In a network with chromatic number two
(a minimum of two colors was required to color the network),

the burst duration of neurons associated with a color depended

on the number of neurons in the group. Asymmetries in the

network’s structure were manifest as asymmetries in burst

duration: larger groups dominated the dynamics (Figure 2A).

The average duration of a burst was a nonlinear function of the

number of neurons associated with the group and showed

a sharp transition as the group size grew (Figure 2B). For a given

network, as the number of separate groups increased, the

number of neurons associated with each color decreased and

thus exerted diminished inhibitory influence upon other groups.

And as this influence diminished, strict coloring-based dynamics

tended to break down (Figure 2C, compare top and bottom

panels). We quantified this loss of structure as the amount of

overlap in activity between different groups (Figure 2D). For

a selected network with 100 inhibitory cells, this overlap showed

an abrupt transition when the number of colors increased from

four to five. We simulated a larger network consisting of 200

neurons to see if this transition was determined by the size of

the network. A similar abrupt increase in variability was also

evident in this larger network. Increasing the time constant of

recovery from adaptation, however, shifted the transition point

to the right (not shown). This transition was also seen in the distri-

bution of burst lengths across all groups (Figure 2E). For a chro-

matic number below four, the burst length for all groups was very

narrowly distributed. When the number of colors exceeded four,

the standard deviation of the distribution increased abruptly (Fig-

ure 2E). This suggests that below a threshold level of inhibition,

neurons showed very low within-group variability. In addition,

the simple periodic sequences observed in networks with few

colors were replaced by more complex sequences of activity

when the number of colors increased. However, even for

networks with high chromatic numbers (�8–10) (bottom panel

of Figure 2C), the influence of graph coloring continued to be

evident in the network’s dynamics.

Dynamical Consequences of Multiple Colorings
The example inhibitory networks shown thus far possess

a unique coloring (Figure 3A); in such a network neurons associ-

ated with a particular color can spike synchronously only with

those neurons that share the same color. However, in the AL indi-

vidual PNs, and therefore, by necessity, inhibitory interneurons,

may switch allegiance between different synchronously spiking

groups (Wehr and Laurent, 1996). Similar dynamic changes in

the composition of synchronous groups of neurons have also

been observed in other systems (Riehle et al., 1997). Networks

that possess a unique coloring do not permit such dynamics.

To circumvent this difficulty we constructed networks with

multiple colorings. For example, the graph in Figure 3B

possesses chromatic number three. One of the four nodes is

not connected to either the red or the blue node. Therefore,

two colorings, one where this group is colored red and the other

where it is colored blue, are permissible colorings of the graph.

A dynamical consequence of this ‘‘structural ambiguity’’ is

shown in Figure 3C. The group that may be colored either red

or blue is able to switch allegiance to spike synchronously with

both the red and the blue group while remaining silent when

the green group of neurons is activated. Based on our formalism,
Neuron 69, 373–386, January 27, 2011 ª2011 Elsevier Inc. 375
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Figure 2. Dynamical Properties of Networks Based on Graph Coloring

(A and B) Influence of the number of neurons associated with a particular color in a network with chromatic number two. In symmetrical networks (each group has

the same number of neurons), both groups spend equal time in the active state (top panel of A and the point [50 50] in B). As the asymmetry in network structure

increases, the larger group increasingly dominates (B and bottom panel of A).

(C–E) Influence of the number of colors. As the number of colors increased, the switching pattern became more noisy (compare top and bottom panels of C). (D)

Mean overlap time for networks consisting of 100 or 200 neurons. The percentage of time during which multiple groups are simultaneously active increases with

chromatic number. (E) Burst length distribution as a function of chromatic number. The width of the distribution increased abruptly when the chromatic number of

the graph exceeded four.
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complex dynamics observed in vivo in the insect AL (Laurent

et al., 1996) and other neuronal networks can thus be attributed

to its structure—a network with multiple colorings permits

transient synchrony in overlapping groups of neurons.

Excitation Does Not Disrupt Coloring-Based Dynamics
The coloring of a purely inhibitory network provides a strong

constraint on its dynamics. However, many biological networks,

including the olfactory system, include populations of excitatory

neurons as well. To explore the consequences of implementing

excitatory neurons, we constructed a network containing excit-

atory and inhibitory neurons with random connections between
376 Neuron 69, 373–386, January 27, 2011 ª2011 Elsevier Inc.
them (connection probability = 0.5) (Bazhenov et al., 2001b) (Fig-

ure 4A). This network was previously proposed as a model of

locust AL dynamics (Assisi et al., 2007; Bazhenov et al., 2001a,

2001b, 2005).

We found that the coloring-based dynamics was not compro-

mised by the addition of excitatory neurons (Figure 4B), but was

rather strengthened. The spike coherence within individual

cycles of the oscillatory field potential (mean activity) increased

significantly when excitation was added (Figure 4C).

The mechanism of synchronization of PNs and LNs can be

understood by considering a single reciprocally connected

pair. When reciprocally coupled, the LNs and PNs oscillate in
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Figure 3. Networks Can Have Unique or

Multiple Colorings

(A) A network with a chromatic number four and

a single coloring, and (B) a network with a chro-

matic number three and two different colorings.

The neuron that may be colored either red

or blue is shown with both colors. Bottom

panels: Adjacency matrices corresponding to the

networks above. (C) The dynamics of a network

of 40 neurons with connectivity like the network

in (B). The bars on the side of the panel correspond

to the red, green, and blue groups of 10 neurons.

Note that the neuron colored red or blue switches

allegiance between the red and the blue groups.

The bars on top of the panel indicate the intervals

of time in which this group of neurons synchro-

nizes with the red or the blue groups.
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antiphase. A Na+ spike generated by a PN elicits an EPSP in the

LN, which in turn generates a spike that delays the onset of

a subsequent PN spike. The frequency of the resulting oscilla-

tions is controlled by the duration and the amplitude of the

IPSP (see Bazhenov et al., 2001b, Figure 2). When a single LN

projects to many postsynaptic PNs, it equally delays and

synchronizes spikes in those PNs. This mechanism, a classic

example of feedback inhibition (Bazhenov and Stopfer, 2010),

is also referred to as Pyramidal Interneuronal Network Gamma

(PING) (Börgers et al., 2005; Börgers and Kopell, 2003, 2005)

and implicated as a prominent mechanism in the generation of

cortical and hippocampal gamma oscillations.

Properties of Follower Neurons Define an Ordering
of the Network Nodes
The distance between neuronal network nodes has often been

defined as the shortest synaptic path length between them.

This measure of distance is particularly relevant to networks of

excitatory neurons that act as threshold units that generate

a spike whenever a predetermined number of presynaptic

neurons fire a spike. A path in such a network (a physical chain

of neurons connected with excitatory synapses) therefore often

translates into a temporal sequence of spikes (Abeles et al.,

1993; Diesmann et al., 1999). Neurons located in close proximity

(in a metric defined by the number of synapses separating

them) would commonly spike within a short temporal interval,

providing common drive to their postsynaptic targets. However,

in networks consisting of excitatory and inhibitory units, each
Neuron 69, 373–386,
capable of acting over multiple time-

scales and interacting nonlinearly, this

measure of distance may not provide

a complete account of the network’s

possible dynamical states. Feedback

inhibition from a single inhibitory neuron

can induce complex patterns of spiking

(Ermentrout, 1992). Sequences of spikes

need not result from physically con-

nected synaptic paths in the network. Is

there another ‘‘hiddenmetric’’ that under-

lies the observable network (Boguñá
et al., 2009)—a measure of distance between nodes that takes

account of relevant biological variables? An answer to this ques-

tion comes from understanding how neurons that follow the AL

network in the olfactory processing hierarchy read their presyn-

aptic input. Kenyon cells (KCs) of the mushroom body (MB)

receive convergent input from excitatory PNs of the AL and are

known to be sensitive to the synchrony of presynaptic input

(Perez-Orive et al., 2002, 2004). Only when a population of

presynaptic excitatory PNs fire in synchrony does it provide suffi-

cient input to activate a postsynaptic KC. Similar properties have

also been described in the thalamocortical system and the

hippocampal formation (Pouille and Scanziani, 2001). Therefore

we sought to construct a space in which synchronously active

PNs could be readily identified. To do this, we considered how

inhibition affects the responses of excitatory PNs. Greater inhib-

itory input was always accompanied by increased synchrony in

the firing of PNs (Figure 5A) (Bazhenov et al., 2001b). In addition,

PNs that received similar inhibitory input tended to spike

together in a highly correlated manner. Therefore, a space that

places PNs receiving similar inhibitory input close together

would be a useful candidate for defining the network’s internodal

distances. In what follows, we demonstrate how knowledge of

the coloring of the inhibitory subnetwork can be effectively

employed to achieve this goal.

To illustrate the construction of this space we used an inhib-

itory subnetwork with two colors. These groups (LN1 and LN2)

generated alternating patterns of activity as described above.

We located each PN within a 2D plane with x and y coordinates
January 27, 2011 ª2011 Elsevier Inc. 377
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A Figure 4. Excitation Preserves Coloring-Based

Dynamics

(A) Schematic of the AL network. Nodes with solid colors:

Groups of inhibitory interneurons associated with a particular

color. PNs (shown as gray circles) are randomly connected to

and receive connections from the inhibitory subnetwork.

(B) Raster plot showing the dynamics of the inhibitory subnet-

work when excitatory neurons were present (bottom panel) or

absent (top panel).

(C) The distribution of a measure of spike coherence over

cycles of the LFP oscillation. The mean coherence of spikes

within a cycle increased when excitatory connections were

added. The coherence (R) of spikes within each cycle of the

oscillatory LFP Rj = (
P

Cosqi)
2 +(

P
Sinqi)

2 was calculated for

each cycle j. The distribution was generated from all values

of Rj. Excitation enhanced coloring-based dynamics of the

inhibitory network.
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corresponding to the number of inputs it received from the

group LN1 (magenta) and LN2 (green), respectively (Figure 5B).

The Euclidean distance between PNs in this plane is a measure

of the similarity of inhibitory input each received. Neurons

placed along any line parallel to the y axis received the same

amount of inhibitory input from the group LN1; the exact amount

of this inhibition depended on how close these neurons were to

the y axis. When LN1 was active (LN2 silent), PNs placed close

to the y axis received only weak inhibitory input (since most of

their input came from LN2) and tended to fire randomly during

each cycle of the oscillatory LFP (see spiking activity close to

the y axis in the top group of panels in Figure 5C). Further

away from the y axis, the inhibitory input from LN1 increased,

as did the coherence of spiking in groups of PNs. Inhibition

had the effect of delaying the onset of the PN spikes; the dura-

tion of this delay was dictated by the amount of inhibition.

Therefore, in this space, neurons further away from the y axis

spiked later and in greater synchrony than those close to the

y axis.

In our reconfigured space, this differential timing led to the

appearance of a wave propagating along the x axis. When

LN1 became quiescent and LN2 was activated, a wave propa-

gating in the orthogonal direction was generated. Extending

these results to a network with N colors, the reconstructed

space will be N-dimensional with (N�1)-dimensional wave-

fronts propagating along orthogonal directions. This seemingly

low-dimensional dynamics became apparent only as a conse-

quence of the coloring-based reordering of PNs, one that may

be used to derive a reduced set of mode equations that repro-

duces the dynamics of the network (Assisi et al., 2005).

Earlier studies have demonstrated that the participation of

PNs in a synchronized ensemble during odor stimulation is

usually transient, lasting a few cycles of the oscillatory

ensemble response. The space based on the coloring of the

inhibitory network provides an ideal representation to examine

transient synchrony in PNs. We hypothesized that transient

synchrony of groups of PNs is a consequence of the topog-
378 Neuron 69, 373–386, January 27, 2011 ª2011 Elsevier Inc.
raphy of competitive interactions in the LN subnetwork. Accord-

ing to this hypothesis, eliminating inhibitory connections

between LNs should remove LN clustering and eliminate tran-

sient PN synchronization. Therefore, to study the specific

effects of network topology on transient synchrony, we elimi-

nated all connections between LN1 and LN2 and simulated

the network, keeping all other parameters identical to the simu-

lations shown in Figure 5C. In the absence of competition

between LN1 and LN2, both groups of neurons spiked synchro-

nously in response to an external input (Figure 5D). Widespread

excitatory inputs from randomly selected PNs tended to further

synchronize the LN populations and reduced the variability of

spikes within a cycle. The inhibitory input to individual PNs did

not vary over different cycles since both LN1 and LN2 gener-

ated spikes at the same time. A PN located at the point (x,y)

in the reconfigured space received x + y inhibitory spikes during

each cycle. PNs located along diagonal lines (corresponding to

x + y = constant) received the same amount of inhibitory input

during each cycle and tended to spike synchronously. As in

the earlier example, PNs receiving greater inhibitory input

generated spikes at later phases of the cycle. This differential

input led to the appearance of a propagating wave of activity

in the reconfigured space. However, unlike the case where

LN-LN interactions were intact, here we found that the waves

traveled along the diagonal (Figure 5E). Most importantly,

each cycle of ensemble activity generated an identical wave

of activity, and each PN remained either synchronized or not

in every cycle, leaving no possibility for transient PN

synchronization.

To emphasize the difference between the two cases and to

test whether LN-LN interactions indeed generate transient

synchrony in PNs in a manner consistent with previous experi-

mental results, we picked subsets of transiently synchronous

PNs and observed the dynamics across the course of eight

cycles of the LFP oscillation. The top two groups of panels in Fig-

ure 5F show the dynamics of a subset of PNs when LN1-LN2

connections were intact. The bottom two groups of panels
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show the dynamics of the same subset of PNs when LN1-LN2

connections were removed. We picked two different subsets

of neurons. In the topmost panel PNs that received exactly seven

inputs from LN1 were selected. These PNs were synchronized

only when the group LN1 was activated (last four cycles).

When LN2 was activated (first four cycles), the phase at which

these neurons spiked was distributed across the oscillatory

cycle. In the next group of panels (second row), we picked

neurons that received exactly seven inputs from LN2 and fired

in synchrony only when LN2 was active (first four cycles). This

population desynchronized during subsequent cycles. In

contrast, when LN1-LN2 connections were removed (Figure 5F,

bottom two rows), each group of PNs was either synchronized

(third row) or not (fourth row) across all cycles of the oscillatory

LFP. A comparison with recordings made in vivo from the locust

AL (Laurent et al., 1996) shows that this form of constant

synchrony is not observed in a majority of PNs, suggesting that

the topography of LN-LN interactions plays a crucial role in tran-

sient synchrony in the AL.

These traveling waves of activity are evident only in the

abstract space defined by the coloring of the inhibitory network.

Our incomplete knowledge of the detailed connectivity of the

locust’s LN subnetwork and limitations on sizes of the sets of

simultaneously recorded neurons preclude the possibility of

directly observing these waves in recordings made in vivo

from the locust AL. However, knowledge of the existence of

these relatively low-dimensional patterns of activity provides

a general way to understand how information propagates

from the AL to their followers, the KCs of the MB. KCs are sensi-

tive to coincidence in presynaptic input (Perez-Orive et al.,

2002, 2004). If KCs receive identical synchronized input from

PNs during every cycle of the oscillation, the same set of KCs

will be activated repeatedly over the duration of the odor

presentation. However, experimental recordings show that

KCs generate very few spikes (�2–3) during the odor presenta-

tion. The absence of LN-LN interactions would therefore

compromise the temporal sparseness of the odor representa-

tion by KCs.

Application to Realistic Networks of Neurons
A number of algorithms to color random graphs exist. However,

except under special circumstances, these algorithms do not

guarantee that the coloring will always be minimal or that all

possible colorings of the networkwill be obtained in a reasonable

length of time (Kubale, 2004). Given the complexity of the graph

coloring problem, using random graphs as our starting point

would have been impractical. Hence we chose to construct

graphs in which neurons associated with a particular color

were connected to all neurons associated with other colors.

How well do these constructed networks emulate the dynamics

of realistic random networks? In the networks constructed thus

far, each neuron received an equal number of connections as

all other neurons that were affiliated with the same color. In real-

istic random networks this assumption is not true in general.

Variability in input across LNs can cause the dynamics of the

network to deviate from the dynamics predicted by the networks

we simulated. To test the effect of perturbations to the network

structure, we simulated a network consisting of two groups of
fifteen neurons that were reciprocally connected to each other

(Figure 6A). Neurons in each group extended 1–14 connections

to neurons belonging to the other group. This is the widest

possible variability in connections that can be achieved in this

network while ensuring that no neuron is isolated from the

network. In addition a network constructed in this manner is

also guaranteed to possess a chromatic number two. First, we

reordered the rows and columns of the adjacency matrix of the

network such that neurons affiliated with the same color were

grouped together (Figure 6B). As in previous examples, the adja-

cency matrix of the random network consisted of diagonal

blocks of zeros. However, all elements of the off-diagonal blocks

are not uniformly one. Does this variability in the number of

connections per neuron alter the coloring-based dynamics of

the network? We found that, while variability in the network

connectivity perturbed the network dynamics, the coloring struc-

ture still clearly defined the neuron responses (Figure 6C, top

panel).

Furthermore, we could reduce the effect of these perturba-

tions by incorporating connections between excitatory PNs

and the inhibitory LNs (Figure 6C, bottom panel) that would

mimic a typical biological network like the insect AL consisting

of interacting excitatory and inhibitory neurons. The back-and-

forth interaction between excitation and inhibition tends to

promote synchrony in both sets of neurons. Each group of LNs

spiked in alternation, thus respecting the coloring of the network

as a constraint. (Börgers and Kopell, 2003) have also demon-

strated that increasing the strength of excitatory to inhibitory

neurons tends to mitigate the influence of heterogeneity due to

random connectivity. This synchronization mechanism has

been demonstrated in the olfactory bulb of rats where the inter-

action between mitral cells and granule cells results in the emer-

gence of rapid synchrony in the network (Schoppa, 2006) (but

see Galán et al., 2006).

In previous simulations we had introduced small variations in

the excitability of individual neurons to ensure that the solutions

would be robust to parameter noise. We also added a small

amplitude noise term (approximately 10% of the amplitude of

the DC input to each neuron) (see Supplemental Information

for details). The role of the coloring of the network on the

dynamics remained robustly evident in spite of these variations.

However we kept a key parameter, the timescale of adaptation,

constant across all neurons. Adaptation allows the LNs to switch

from a spiking to a quiescent state (Figure 1). The timescale

of adaptation affects the duration that a neuron spends in each

state. In a realistic network the timescale of adaptation may

be distributed across the population of LNs. We sought to

determine if such variation can compromise the coloring-based

dynamics of the inhibitory subnetwork. We simulated the

dynamics of the network with broad variability consistent

with the timescale of the Ca2+-dependent potassium current.

A parameter tx was added to the timescale tm of the Ca2+-

dependent potassium current (see equation for m in the section

Ca2+-dependent potassium current IKCa in the Supplemental

Information). Its value tx was picked from a uniform random

distribution with values extending from�0.02 to 0.01 (Figure 6D).

The range of this distribution was adjusted to generate a

large variation in the oscillatory switching frequency of two
Neuron 69, 373–386, January 27, 2011 ª2011 Elsevier Inc. 379
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Figure 5. Coloring-Based Reordering Generates Low-Dimensional Dynamics

(A) Distribution of spikes within each cycle of the oscillatory LFP as a function of presynaptic inhibitory input. For each interval of presynaptic inhibitory input

(0.5 nA intervals), neurons that produce spikes within a particular cycle were picked and the deviation of spike phase from the mean was calculated. The spread

of the distribution narrowed as the inhibitory input increased (from top to bottom).

(B) PNs were ordered in a 2D space depending on the number of inputs each received from a particular group of inhibitory neurons.

(C) PN spikes form traveling waves in the reconstructed space. Top panel shows the activity when LN1 is active and themiddle panel shows the activity when LN2

is active.

(D) Raster plot of LN activity when interactions between LN1 and LN2 were removed.

(E) The pattern of wave propagation by PNs in the network with no lateral inhibition between LNs.
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Figure 6. Coloring-Based Dynamics in Realistic Neural Networks

(A) A random bipartite graph. Individual neurons receive between 1 and 14 inputs from LNs belonging to a different color and the corresponding adjacencymatrix.

(B) The neurons were grouped into two groups based on the color. Adjacencymatrix of the network shows off-diagonal blocks with ones (shaded gray) and zeros.

(C) Raster plot showing the response of the network to input in the absence (top panel) and the presence (bottom panel) of random excitatory input from PNs.

(D) Distribution of the parameter tx that perturbs the timescale of the Ca2+-dependent potassium current.

(E) Dynamics of inhibitory LNs as a function of tx. The top trace shows the response of a neuron belonging to a reciprocally inhibitory pair with tx = 0.01. The

bottom trace shows the response of a neuron with tx = 0.02.

(F) Dynamics of a group of 30 LNs that form a three-color network. The value of tx for each LN in the network was picked from the distributions shown in (D).
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reciprocally coupled LNs. Switching between the active and

quiescent state was slow (tx = 0.01) and increased dramatically

for tx = –0.02 (Figure 6E). We found that a wide variation in the

Ca2+-dependent potassium current leads to nonuniformity in
(F) Spike raster showing the activity of a subset of neurons as a function of the ph

cycles of the oscillation. The color of the filled circle indicates which of the two g

rows: Intact LN1-LN2 inhibition. The top row of panels shows the activity of a group

a group of neurons that receive seven inputs from LN2. Bottom two rows: LN1 an

that are arranged along the diagonal of the grid. Each neuron along this diagonal re

the same group of neurons as in the second row but with no LN1-LN2 inhibition
the duration of LN spike bursts across the duration of the odor

presentation. However, despite this realistic variability, the

dynamics of the LNs continues to follow the coloring of the

network (Figure 6F).
ase of the oscillatory LFP. Different panels in each row correspond to different

roups of neurons (LN1 or LN2) was active during that particular cycle. Top two

of neurons that receive exactly seven inputs from LN1. The second row shows

d LN2 are disconnected. The third row shows the activity of a group of neurons

ceives a sum of five inputs from the groups LN1 and LN2. The fourth row shows

.
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DISCUSSION

Transient Synchrony and Inhibition
In this study we demonstrated that inhibition mediated by a local

interneuron population may generate transiently synchronous

spiking in evolving populations of excitatory neurons, and we

constructed a space in which this transient synchrony could be

easily identified. In agreement with our previous studies (Bazhe-

nov et al., 2001a, 2001b), our model predicts that during odor

stimulation the sequence of transitions between synchronized

and desynchronized states (with respect to the oscillatory

mean activity) of the excitatory neurons in the insect AL should

match the sequence of alternations between active and quies-

cent states in the inhibitory subnetwork that shapes the timing

of spikes in excitatory cells. In this new study we further estab-

lished a link between a structural characteristic of every inhibi-

tory network, its colorings, and the resulting collective dynamics

of that network and, as a result, the information flow through this

system. We showed that lateral inhibition between local inter-

neurons is required to transiently synchronize PNs in the AL;

and that graph coloring provides a useful description of compet-

itive lateral inhibition between inhibitory interneurons that also

allows a low-dimensional description of the complex AL network

dynamics in amanner consistent with the perspective of follower

neurons. Our approach allowed us to rank excitatory neurons not

by their distance in physical space, but rather, by the strength of

inhibition they receive, thus providing a natural way to group

together the neurons that act together (fire in synchrony)—

a necessary condition to activate postsynaptic neurons given

a coincidence detection type of information coding.

The neurons receiving the strongest inhibitory input also spike

with the largest delay; therefore, in the reconfigured space, this

differential timing led to the appearance of waves of activity

propagating in directions defined by dynamics of inhibitory inter-

neurons. In the absence of this reordering, the dynamics of PNs

would appear as randomly occurring patterns of activity corre-

lated with the dynamics of LNs. The traveling wave-like

dynamics only observed in the reconfigured space represents

a dramatic reduction in the dimensionality of the description.

This simplified description of the network’s behavior provides

a foundation for generating more tractable models of spatiotem-

poral patterning in coupled networks of excitatory and inhibitory

neurons.

Locust AL Dynamics
In the locust AL, a typical PN displays a rather simple pattern of

transitions between synchronized and desynchronized states

while responding to an odor (Laurent and Davidowitz, 1994; Lau-

rent et al., 1996). This pattern of synchrony must be driven by

contiguous bursts of spikes in inhibitory interneurons alternating

with silence. Such activity is in fact typical of inhibitory inter-

neuron firing patterns during odor stimulation. Recordings

made in vivo from the locust AL demonstrate that inhibitory inter-

neurons tend to show rather simple activity patterns consisting

of a single burst of activity during a particular odor presentation.

Many inhibitory interneurons display tonic activation over the

entire duration of odor stimulation in contrast to others that

remain hyperpolarized (Figure 7A, bottom). Such patterns of
382 Neuron 69, 373–386, January 27, 2011 ª2011 Elsevier Inc.
activity are well described by our model (Figure 7A, top). In this

example, for the network with nonunique coloring, one group

of LN neurons remained active during the entire duration of stim-

ulation while the two other groups of neurons switched between

active and silent states.

Why do LNs in the AL exhibit only a subset of the broad reper-

toire of patterns that the networks simulated here are capable of

generating? The formalism we developed in our manuscript

points us toward several possibilities. These dynamical patterns

are likely to result from an intrinsic asymmetry within the AL

subnetwork that gets activated in response to a specific odor.

If only a subset of neurons receives strong activation during

a particular odor stimulation, these neurons will dominate the

response. Asymmetries in coupling strength can also result in

the predominance of one group that would prevent switching

between groups to occur. In addition, if the number of colors is

large, a trajectory may never recur during odor stimulation.

Hence the same LN may not generate multiple bursts of spikes.

We have shown that fast GABAergic inhibition mediated by

GABAA receptors transiently synchronizes PN activity over

a few cycles of the ensemble oscillatory response. A second

important form of inhibition found in the AL mediated by slow

GABAB receptors acts over a timescale in the range of hundreds

of milliseconds (Wilson and Laurent, 2005). Experiments (Ma-

cLeod and Laurent, 1996) and models (Bazhenov et al., 2001a)

have demonstrated that this type of interaction leads to lengthy

epochs of timewherein individual PNs are hyperpolarized and do

not spike at all. Picrotoxin applied to the AL spares patterning

caused by slow inhibition while abolishing oscillatory synchroni-

zation on a fast timescale. The timescales separating the two

forms of inhibition differ by approximately an order of magnitude.

To explore how network structure leads to transient synchrony,

a key dynamical variable involved in fine discrimination in the

olfactory system (Stopfer et al., 1997), we focus here on fast inhi-

bition while minimizing the effects of slow inhibition in the model.

The repertoire of patterns generated by the inhibitory subnet-

work in the locust AL forms a subset of the full range of patterns

that can be generated by the networks simulated here. Feedfor-

ward architecture and coincidence detection mechanisms like

those illustrated here are not unique to the insect olfactory

system. Presynaptic synchrony allows feedforward thalamic

input caused by sensory stimulation in various modalities to be

faithfully transmitted to the cortex in spite of the inability of indi-

vidual thalamocortical projections to drive cortical activity (Bruno

and Sakmann, 2006). Similarities in structure have also occa-

sioned comparisons between the function of the olfactory bulb

and the thalamus (Kay and Sherman, 2007). In the mammalian

spinal cord it has been shown that genetically silencing certain

groups of neurons can have profound behavioral consequences

(Gosgnach et al., 2006; Lanuza et al., 2004; Zhang et al., 2008).

For example, silencing excitatory V3a interneurons compro-

mises the rhythmicity and stability of locomotor outputs (Zhang

et al., 2008). The coherence of spiking activity in our model

network was also similarly compromised by the removal of excit-

atory interactions.

The sequence of bursts generated by the networks con-

structed here qualitatively resembles the kind of dynamics

seen in networks that exhibit a form of competition termed



40
m

V

−60

−40

−20

0

20

40

dT

t = 68ms t = 72ms t = 76ms t = 80ms

C

in
 v

iv
o

1s

A

B

dx

inputs from LN1 (x)in
p

u
ts

 fr
o

m
 L

N
2 

(y
)

(xi,yi)

PN
 m

em
b

ra
n

e 
p

o
te

n
ti

al

PN index

LN1 LN2

(4,1) (6,3) (7,4) (8,5) (9,6) (10,7)(5,2)

(3,6) (4,7) (5,8) (6,9) (7,10)(2,5)(1,4)

si
m

u
la

ti
o

n
s

Figure 7. Model Simulations and Construction of

a Segmental Swimming Pattern Generator

(A) Example traces of local inhibitory interneuron activity

from model simulations (top two traces) and in vivo intra-

cellular recordings from locust local interneurons (bottom

two traces). In the left and central panel, traces show

responses of a single LN to multiple presentations of the

same odor. In the rightmost panel, the two traces show

the responses of different neurons to the same odor. The

green lines below the traces show the duration over which

the stimulus was presented.

(B and C) Coloring-basedmodel of a segmental swimming

pattern generator. Two groups of neurons along off-diag-

onal lines in the plot (B, top panels) were picked. The

perpendicular distance between them is marked dx.

Waves of activity generated by the network (B, top panels)

were seen in these subgroups of neurons (B, bottom

panels). The time difference between the peaks of the trav-

eling waves is marked dT. The subnetwork that generates

traveling waves along these lines of neurons is shown in

(C). Each neuron is marked by two coordinates (xi,yi).

The x coordinate shows the number of inhibitory inputs

received by a given PN from the group LN1. The y coordi-

nate shows the number of inhibitory inputs received from

the group LN2.
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winnerless competition (WLC) (Rabinovich et al., 2001). These

patterns of activity have been hypothesized to be heteroclinic

orbits that connect saddle fixed points or saddle limit cycles in

the system’s state space (Rabinovich, 2006). The stability of

these sequences and the capacity of the network to generate

sequential patterns have been analyzed in detail. However, the

relationship between the structure of the network and the result-

ing patterns of activation are not yet known. Ahn et al. (2010)

derive a computationally efficient and analytically tractable

discrete time dynamical system that accurately replicates the

dynamics of a more complex Hodgkin-Huxley-type neuronal

network. The discrete time model predicts which group of

neurons will spike next given that a specific group of neurons

spiked during a previous epoch. The constraints imposed on

the model include the Ca2+ concentration in the cells, the ionic

conductances, the neuronal thresholds, and the number of

inputs each neuron receives from a group that spiked in

a preceding epoch. Our approach is complementary to that of

Ahn et al. (2010).We use a global descriptor of the network struc-

ture (its colorings) to deduce the set of all possible solutions of
Neuron 69, 37
the system (a solution is valid only if it respects

the coloring of the network). Additional

constraints such as the directed connections

between neurons, asymmetries in intrinsic

parameters, and Ca2+ concentration in the cell

(Ahn et al., 2010) can make specific solutions

stable.

Constructing Networks that Generate
Prespecified Temporal Relationships
among Components
In this study we used the insect olfactory system

to derive a structure-dynamics relationship in
neuronal networks. This relationship can be tested in other

well-charted networks such as central pattern generators

(Marder and Calabrese, 1996). In the stomatogastric ganglion,

where reciprocal inhibition is ubiquitous and implicated in gener-

ating periodic patterns (Getting, 1989; Marder and Calabrese,

1996), alternating bursts are produced by a number of different

mechanisms. The pyloric rhythm of the crustacean stomatogas-

tric ganglion is generated by a combination of intrinsic bursting

and postinhibitory rebound in the same circuit, producing

a rhythmic pattern of alternation that is consistent with the

coloring of the underlying network (see Figures 4A and 4B in

Marder and Bucher, 2007). The AB neuron entrains the PD

neuron via gap junction coupling. These neurons together inhibit

the other neurons in the network. The alternating triphasic

pattern is generated by groups of neurons that are associated

with different colors. The output from central pattern generators

drives motor neurons that synapse onto muscles to generate

rhythmic patterns of movement. The temporal ordering of

different components of the system is crucial to the generation

of appropriate movement. Using an inhibitory network as
3–386, January 27, 2011 ª2011 Elsevier Inc. 383
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a nucleus, we can generate spiking in excitatory neurons that

obeys specific temporal relationships.

In Figures 7B and 7C we illustrate the construction of

a segmental swimming pattern generator using a subnetwork

extracted from the network defined in Figure 5. We chose two

groups of inhibitory interneurons (identified as LN1 and LN2 in

Figure 7C) that were reciprocally coupled to each other. The re-

sulting dynamics of the inhibitory network produced an alter-

nating pattern of bursts that provided input to a set of PNs.

The number of inputs that each PN received from a particular

group is marked (x,y) where x is the number of inputs from group

LN1 and y is the number of inputs from group LN2. Our goal was

to choose two sets of PNs, each of which could generate a trav-

eling wave, one following the other with a time difference dT. The

dynamics of this subnetwork could emulate the swimming

pattern in an organism like the lamprey that swims forward as

a wave of muscular activity courses along two sides of its length

(Wallén and Williams, 1984). Inhibitory input from LNs tends to

delay the onset of the following PN spike. The extent of the delay

in the PN spikes increased with increasing values of inhibition.

A traveling wave could, therefore, be generated by choosing

PNs that received an increasing number of inputs from either

one of the inhibitory neuron groups, LN1 or LN2, and arranging

them linearly (see Figure 7B). When the inhibitory group LN1

was active, a wave of excitatory activity propagated parallel to

the y axis (top panels of Figure 7B). The peak of this wave inter-

sected with the lines of neurons marked by the filled circles and

generated traveling waves of activity in each of these two groups

(Figure 7B, bottom panels) (see Supplemental Information and

Movie S1 available online). The dT between these two waves

(Figure 7B, bottom panel) increased with increasing the perpen-

dicular distance (marked dx in Figure 7B, top panel) between the

two groups of excitatory neurons. Thus, by extracting these

groups of excitatory neurons and adjusting the dx between

them, we could generate a pair of traveling waves with a desired

dT between them. The leading and the following wave could be

switched by switching the active inhibitory group from LN1 to

LN2. This can be achieved by the autonomous dynamics of the

inhibitory network or by applying an external perturbation. Other

phase relationships between neurons can be obtained by

choosing appropriate groups of PNs from the 2D ordering of

excitatory neurons shown in Figure 5 and Figure 7B (top panels).

More complex phase relationships can be generated by using

a larger number of colors and multiple colorings of the network.

This simple example illustrates that knowing the coloring struc-

ture of the inhibitory network, we can predict the dynamics of

the excitatory principal cells despite the complex and seemingly

random synaptic structure between excitatory and inhibitory

neurons.

Conclusion
The ultimate goal of exploring sensory network dynamics is to

understand the spatiotemporal activity of excitatory principal

neurons since this activity is what typically drives the responses

of neurons at downstream levels of processing. In many circuits

where information processing is based on the detection of coin-

cidence between spikes (for example, between insect the AL and

MB), a property important for understanding information flow is
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synchrony between excitatory neurons. In this study we showed

a relationship between the connectivity structure of the inhibitory

subnetwork and synchronization properties of excitatory

neurons. Furthermore, we used the coloring of the inhibitory

subnetwork as a tool to construct a space in which the distance

between excitatory neurons is defined not by the length of the

synaptic path connecting those neurons, but by the similarity

of the inhibitory input they receive. This description optimally

matches the perspective of the downstream neurons looking

for synchrony in ensembles of presynaptic cells and, therefore,

allows a low-dimensional description of seemingly complex

high-dimensional network activity.

EXPERIMENTAL PROCEDURES

Network Model

Individual PNs and LNs were modeled by a single compartment that included

voltage- and Ca2+-dependent currents described by Hodgkin-Huxley kinetics

(Hodgkin and Huxley, 1990). Since the biophysical makeup of insects’ olfac-

tory neurons has not yet been completely characterized, we used parameters

drawn fromwell-described cell types while following two guiding principles: (1)

minimize the number of currents and their complexity in each cell type; (2)

generate realistic (though simplified) firing profiles. Our LN model includes

a transient Ca2+ current (Laurent et al., 1993), a calcium-dependent potassium

current (Sloper and Powell, 1979), a fast potassium current (Traub and Miles,

1991), and a potassium leak current, thus producing profiles devoid of Na+

action potentials but capable of Ca2+-dependent active responses, as

observed experimentally (Laurent and Davidowitz, 1994). Our PN model

includes a fast sodium current (Traub and Miles, 1991), a fast potassium

current (Traub and Miles, 1991), a transient K+ A-current (Huguenard et al.,

1991) and a potassium leak current IKL. Equations for all intrinsic currents in

locust LNs and PNs can be found in Bazhenov et al. (2001a, 2001b).

In the model, isolated PNs displayed overshooting Na+ spikes at a fixed

frequency throughout DC stimulation. Local neurons, in contrast, fired low-

amplitude Ca2+ spikes and displayed spike frequency adaptation caused by

Ca2+-dependent potassium currents. Fast GABA (LN-PN and LN-LN connec-

tions) and nicotinic cholinergic synaptic currents (PN-LN connections) were

modeled by first order activation schemes. The equations for all intrinsic and

synaptic currents are given in the Supplemental Information and are based

on Bazhenov et al. (2001a, 2001b).

In Figures 1–3we simulated isolated networks of LNs. The population of LNs

and the specific connectivity are shown in the respective figures. In the

following figures we simulated networks including both excitatory PNs and

inhibitory LNs. Drawing from the basic anatomy of the insect AL, the PNs

received inputs from LNs and projected random connections back to LNs.

The AL model simulated in Figure 5 included 20 LNs and 100 PNs.

LN-PN connectionswere determined such that each PN occupied a position

on the grid in Figure 5. We tested the network with a larger population of LNs

and PNs with random connectivity to obtain the same result (propagating

waves of activity in the 2D plane). With random connections the population

of PNs simulated did not cover all points on the 2D grid. However, the waves

of activity could be clearly seen despite gaps in the grid of PNs. We also simu-

lated a network with chromatic number three and were able to generate 2D

wave-fronts that propagated along orthogonal directions.

Electrophysiology

Intracellular recordings (Figures 1 and 7) weremade from local neurons in adult

locusts (Schistocerca americana) obtained from a crowded colony. Animals

were immobilized and stabilized with wax with one antenna secured. The brain

was exposed, desheathed, and superfused with locust saline as previously

described (Laurent and Davidowitz, 1994). Intracellular electrodes were sharp

glass micropipettes (O.D = 1.0 mm, Warner Instruments, 80–230 MU,

Sutter P97 horizontal puller, Sutter Instruments) and were filled with 0.5 M

potassium acetate and 5% neurobiotin (Vector Laboratories). Data were digi-

tally acquired (5 kHz sampling rate, LabView software and PCI-6602 DAQ and
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PCI- MIO-16E-4 hardware, National Instruments), stored on a PC hard drive,

and analyzed off-line using MATLAB (The MathWorks, Inc.). Odor puffs were

dilute grass volatiles delivered as described in Brown et al. (2005).

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes one figure, one movie, and

supplemental text and can be found with this article online at doi:10.1016/

j.neuron.2010.12.019.

ACKNOWLEDGMENTS

This work was supported by grants from the US National Institute of Deafness

and other Communication Disorders (C.A. and M.B.), the US National Institute

of Neurological Disorders and Stroke (M.B.) and a USNational Institute of Child

Health and Human Development intramural award (M.S.). The authors would

like to thank Professor Gilles Laurent for many stimulating discussions and

insightful suggestions and Stacey Brown Daffron for providing examples of

recordings from LNs made in vivo. C.A and M.B. would also like to thank

Professor Terrence Sejnowski and members of the Computational Neurobi-

ology Laboratory at the Salk Institute for Biological Studies for hospitality

and a number of fruitful discussions. C.A. would like to thank Dr. Suhita Nad-

karni for discussions and comments about the manuscript.

Accepted: November 15, 2010

Published: January 26, 2011

REFERENCES

Abeles, M., Bergman, H., Margalit, E., and Vaadia, E. (1993). Spatiotemporal

firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol.

70, 1629–1638.

Ahn, S., Smith, B.H., Borisyuk, A., and Terman, D. (2010). Analyzing neuronal

networks using discrete-time dynamics. Physica D 239, 515–528.

Appel, K., and Haken, W. (1977). Solution of the four color map problem.

Scientific American 237, 108–121.

Appel, K., and Haken, W. (1989). Every Planar Map Is Four Colorable.

Contemporary Mathematics, Volume 98 (Providence, Rhode Island:

American Mathematical Society).

Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C. (2008).

Synchronization in complex networks. Physics Reports 469, 93–153.

Assisi, C.G., Jirsa, V.K., and Kelso, J.A.S. (2005). Synchrony and clustering in

networks with global coupling and parameter dispersion. Phys. Rev. Lett. 94,

018106.

Assisi, C.G., Stopfer, M., Laurent, G., and Bazhenov, M. (2007). Adaptive

regulation of sparseness by feedforward inhibition. Nat. Neurosci. 10,

1176–1184.

Bazhenov, M., and Stopfer, M. (2010). Forward and back: motifs of inhibition in

olfactory processing. Neuron 67, 357–358.

Bazhenov, M., Stopfer, M., Rabinovich, M., Abarbanel, H.D.I., Sejnowski, T.J.,

and Laurent, G. (2001a). Model of cellular and network mechanisms for odor-

evoked temporal patterning in the locust antennal lobe. Neuron 30, 569–581.

Bazhenov, M., Stopfer, M., Rabinovich, M., Huerta, R., Abarbanel, H.D.,

Sejnowski, T.J., and Laurent, G. (2001b). Model of transient oscillatory

synchronization in the locust antennal lobe. Neuron 30, 553–567.

Bazhenov, M., Stopfer, M., Sejnowski, T.J., and Laurent, G. (2005). Fast odor

learning improves reliability of odor responses in the locust antennal lobe.

Neuron 46, 483–492.

Benda, J., and Herz, A.V.M. (2003). A universal model for spike-frequency

adaptation. Neural Comput. 15, 2523–2564.

Biggs, N.L., Lloyd, E.K., and Wilson, R.J. (1986). Graph Theory 1736–1936

(New York: Oxford University Press).

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. (2006).

Complex networks: Structure and dynamics. Physics Reports 424, 175–308.
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