
Molecular Computation  
An Algorithmic Approach

Rati Gelashvili  
 

Joint work with  
Dan Alistarh (ETH), David Eisenstat (Google),  

James Aspnes (Yale), Milan Vojnovic (MSR), Ron Rivest (MIT)

Distributed Systems

Ingredients:

Distributed Systems

Ingredients:

• Nodes

Distributed Systems

Ingredients:

• Nodes
• Communication

Distributed Systems

Ingredients:

• Nodes
• Communication
• Computation

Computational Model 
Population Protocols [AADFP’04]

Computational Model 
Population Protocols [AADFP’04]
• Nodes are simple, identical agents

• Each node is the same finite state automaton
• For example: a molecule  

Computational Model 
Population Protocols [AADFP’04]
• Nodes are simple, identical agents

• Each node is the same finite state automaton
• For example: a molecule  

• Interactions are pairwise, and follow a fair scheduler
• Usually considered uniform random
• Nodes update their state following interactions 

Computational Model 
Population Protocols [AADFP’04]
• Nodes are simple, identical agents

• Each node is the same finite state automaton
• For example: a molecule  

• Interactions are pairwise, and follow a fair scheduler
• Usually considered uniform random
• Nodes update their state following interactions 

• Computation is performed collectively
• The system should converge to configurations  

satisfying meaningful predicates
• No “fixed” decision time

Computational Model 
Population Protocols [AADFP’04]
• Nodes are simple, identical agents

• Each node is the same finite state automaton
• For example: a molecule  

• Interactions are pairwise, and follow a fair scheduler
• Usually considered uniform random
• Nodes update their state following interactions 

• Computation is performed collectively
• The system should converge to configurations  

satisfying meaningful predicates
• No “fixed” decision time

• A.k.a. Chemical Reaction Networks

Complexity

1. Time
• Round = a single pair interacts
• Chosen uniformly at random

• Parallel convergence time
• #rounds to convergence / # nodes
• Alternative continuous-time definition exists

Complexity

1. Time
• Round = a single pair interacts
• Chosen uniformly at random

• Parallel convergence time
• #rounds to convergence / # nodes
• Alternative continuous-time definition exists

2. Space
• Number of distinct states per automaton
• Alternatively, #memory bits to encode state

More Precisely: Communication

Courtesy of the Microsoft Research Biological Computation Group

More Precisely: Communication

Courtesy of the Microsoft Research Biological Computation Group

More Precisely: Communication

Courtesy of the Microsoft Research Biological Computation Group

What can we compute?
We can perform interactions of the type: A B

C D

What can we compute?
We can perform interactions of the type:
Example: the OR function
• Initial states: 0 or 1
• Final state:
• If there exists a 1, then all 1.
• Otherwise, all 0

• Protocol:

A B

C D

What can we compute?
We can perform interactions of the type:
Example: the OR function
• Initial states: 0 or 1
• Final state:
• If there exists a 1, then all 1.
• Otherwise, all 0

• Protocol:

0 0

0 0

A B

C D

What can we compute?
We can perform interactions of the type:
Example: the OR function
• Initial states: 0 or 1
• Final state:
• If there exists a 1, then all 1.
• Otherwise, all 0

• Protocol:

1

1 1

10 0

0 0

A B

C D

What can we compute?
We can perform interactions of the type:
Example: the OR function
• Initial states: 0 or 1
• Final state:
• If there exists a 1, then all 1.
• Otherwise, all 0

• Protocol:

10

1 1

1

1 1

10 0

0 0

A B

C D

What can we compute?
We can perform interactions of the type:
Example: the OR function
• Initial states: 0 or 1
• Final state:
• If there exists a 1, then all 1.
• Otherwise, all 0

• Protocol:

10

1 1

1

1 1

10 0

0 0

1

1 1

0

A B

C D

The Majority Function
Majority (“Consensus”)
• Initial states A, B
• Output:
• A if #A > #B initially.
• B, otherwise.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCMz22dOP4MYCFUa7FAode48KLg&url=https://community.emc.com/people/ble/blog/2012/05/05/reality-ruled-by-majority&ei=q-KnVYz1Isb2UvueqvAC&bvm=bv.97949915,d.d24&psig=AFQjCNEDhAMXYmsRmQ1zr_2PnrXUQ4v9Ew&ust=1437152258616798

The Majority Function
Majority (“Consensus”)
• Initial states A, B
• Output:
• A if #A > #B initially.
• B, otherwise.

• Fundamental task
• Complexity: [AAE08] & [DV12]; [PVV09] & [MNRS14]
• Natural computation:  

the cell cycle switch implements approximate majority [CC12]
• Implementation in DNA: [CDS+13, Nature Nanotechnology]

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCMz22dOP4MYCFUa7FAode48KLg&url=https://community.emc.com/people/ble/blog/2012/05/05/reality-ruled-by-majority&ei=q-KnVYz1Isb2UvueqvAC&bvm=bv.97949915,d.d24&psig=AFQjCNEDhAMXYmsRmQ1zr_2PnrXUQ4v9Ew&ust=1437152258616798

Solving Majority
4-State Exact Majority [PVV09] [MNRS14]
• Protocol:

A B

eA eB

Solving Majority
4-State Exact Majority [PVV09] [MNRS14]
• Protocol:

A B

eA eB

A B

eA eB

Solving Majority
4-State Exact Majority [PVV09] [MNRS14]
• Protocol:

A B

eA eB

A B

eA eB

A eB

eAA

Solving Majority
4-State Exact Majority [PVV09] [MNRS14]
• Protocol:

A B

eA eB

A B

eA eB

A eB

eAA

BeA

eB B

Solving Majority
4-State Exact Majority [PVV09] [MNRS14]
• Protocol:

A B

eA eB

A B

eA eB

A eB

eAA

BeA

eB B

Solving Majority
4-State Exact Majority [PVV09] [MNRS14]
• Protocol:

A B

eA eB

A B

eA eB

A eB

eAA

BeA

eB B

Discrepancy/margin:  
ε = |#A - #B| / n

Can be as small as
ε = O(1 / n).

Solving Majority
4-State Exact Majority [PVV09] [MNRS14]
• Protocol:

A B

eA eB

A B

eA eB

A eB

eAA

BeA

eB B

Theorem: Given n nodes and discrepancy ε, the
running time of 4EM is O((log n) / ε).

Discrepancy/margin:  
ε = |#A - #B| / n

Can be as small as
ε = O(1 / n).

Solving Majority
4-State Exact Majority [PVV09] [MNRS14]
• Protocol:

A B

eA eB

A B

eA eB

A eB

eAA

BeA

eB B

Theorem: Given n nodes and discrepancy ε, the
running time of 4EM is O((log n) / ε).

Can be ϴ(n log n) if ε = constant / n.

Discrepancy/margin:  
ε = |#A - #B| / n

Can be as small as
ε = O(1 / n).

Solving Majority Approximately
• 3-state Approximate Majority [AAE08] [DV12]

A B

C

Solving Majority Approximately
• 3-state Approximate Majority [AAE08] [DV12]
• The protocol:

A B

C

Solving Majority Approximately
• 3-state Approximate Majority [AAE08] [DV12]
• The protocol:

A B

C

A B

CC

Solving Majority Approximately
• 3-state Approximate Majority [AAE08] [DV12]
• The protocol:

A B

C

B

B

C

B

A B

CC

Solving Majority Approximately
• 3-state Approximate Majority [AAE08] [DV12]
• The protocol:

A B

C

B

B

C

B

A

A

C

A

A B

CC

Solving Majority Approximately
• 3-state Approximate Majority [AAE08] [DV12]
• The protocol:

• Execution:

A B

C

B

B

C

B

A

A

C

A

A B

CC

Solving Majority Approximately
• 3-state Approximate Majority [AAE08] [DV12]
• The protocol:

• Execution:

A B

C

B

B

C

B

A

A

C

A

A B

CC

Solving Majority Approximately
• 3-state Approximate Majority [AAE08] [DV12]
• The protocol:

• Execution:

A B

C

B

B

C

B

A

A

C

A

A B

CC

Solving Majority Approximately
• 3-state Approximate Majority [AAE08] [DV12]
• The protocol:

• Execution:

A B

C

B

B

C

B

A

A

C

A

Theorem: Given n nodes and discrepancy ε > log n/√n,  
the running time of 3AM is O(polylog n),  

and the protocol is correct with high probability.

A B

CC

Solving Majority Approximately
• 3-state Approximate Majority [AAE08] [DV12]
• The protocol:

• Execution:

A B

C

B

B

C

B

A

A

C

A

Theorem: Given n nodes and discrepancy ε > log n/√n,  
the running time of 3AM is O(polylog n),  

and the protocol is correct with high probability.

Error probability can be as high as constant
for lower discrepancy.

A B

CC

The Status

Algorithm Reliability Speed

The Four-State Protocol Exact Slow  
(super-linear)

The Three-State Protocol Flaky
(Up to Constant Error)

Fast  
(poly-logarithmic)

Average&Conquer

Algorithm Reliability Speed

The Four-State Protocol Exact Slow  
(super-linear)

The Three-State Protocol Flaky
(Up to Constant Error)

Fast  
(poly-logarithmic)

Average&Conquer [PODC 2015] Exact Fast  
(poly-logarithmic)

Average&Conquer

Algorithm Reliability Speed

The Four-State Protocol Exact Slow  
(super-linear)

The Three-State Protocol Flaky
(Up to Constant Error)

Fast  
(poly-logarithmic)

Average&Conquer [PODC 2015] Exact Fast  
(poly-logarithmic)(Super-Constant State Space)  

The Plan

• Population Protocols
• The Majority Problem
• 4EM
• 3AM
• Average-and-Conquer (AVC)
• Quantized AVC

• Impossibility Results
• Open Questions
• Leader Election Problem

• Each state corresponds to a value (“confidence level”)
• Strong states (non-negative value):

• Positive -> A
• Negative -> B

• Weak: value +/- 0
• All nodes start with absolute value m > 0

• +m if A
• -m if B

• Two interaction types:
• Averaging: strong (non-zero) nodes average out their values
• Conquer: strong (non-zero) nodes bring weak nodes to “their side”

• Output:
• If positive or +0, then A
• If negative or -0, then B

Simplified AVC: Main Ideas

+m -m

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

+0 -0

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values

+0 -0

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values

+0 -0

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values

+0 -0

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values

+0 -0

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values

+0 -0

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values

+0 -0

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values

+0 -0

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

+0 -0

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

+0 -0

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

+0 -0

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

+0 -0

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values
Conquer:
• Strong nodes sway weak nodes towards their decision.

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

+0 -0

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values
Conquer:
• Strong nodes sway weak nodes towards their decision.

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

+0 -0

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values
Conquer:
• Strong nodes sway weak nodes towards their decision.

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

+0 -0

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values
Conquer:
• Strong nodes sway weak nodes towards their decision.

Note: For m = 1, we obtain  
a variant of 4EM.

AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

+0 -0

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:
• Whenever two strong nodes meet, they average values
Conquer:
• Strong nodes sway weak nodes towards their decision.

Note: For m = 1, we obtain  
a variant of 4EM.

Disclaimer: original protocol is more
complicated for technical reasons

Summing up

Summing up
Theorem 1 [AGV15]: Given fixed m < n, AVC solves majority exactly in

expected parallel time O(log n / (m ε) + log n log m),  
using s = O(m + log n log m) total states.

Summing up

• In short:
• If m ≈ 1 / ε, then running time is always poly-logarithmic
• If ε = 1 / n, then m needs to be linear in n
• 1023 molecules -> O(1023) states?!

• 1023 molecules -> O(232 states)
• The idea: quantize integer states to powers of two

Theorem 1 [AGV15]: Given fixed m < n, AVC solves majority exactly in
expected parallel time O(log n / (m ε) + log n log m),  

using s = O(m + log n log m) total states.

Summing up

• In short:
• If m ≈ 1 / ε, then running time is always poly-logarithmic
• If ε = 1 / n, then m needs to be linear in n
• 1023 molecules -> O(1023) states?!

• 1023 molecules -> O(232 states)
• The idea: quantize integer states to powers of two

Theorem 1 [AGV15]: Given fixed m < n, AVC solves majority exactly in
expected parallel time O(log n / (m ε) + log n log m),  

using s = O(m + log n log m) total states.

Theorem 2 [AAEGR16]: logAVC solves majority exactly in expected
parallel time O(log3 n),  

using s = O(log2 n) total states.

Is AVC any good?

Results are for ε = O(1 / n)
Legend:
Blue = 3AM
Green = 4EM
Yellow = AVC / logAVC

Is AVC any good?

Results are for ε = O(1 / n)
Legend:
Blue = 3AM
Green = 4EM
Yellow = AVC / logAVC

Is AVC implementable?

Is AVC any good?

Results are for ε = O(1 / n)
Legend:
Blue = 3AM
Green = 4EM
Yellow = AVC / logAVC

Is AVC implementable?
Challenging: currently, small constant

number of states implementable.

Time-Space Trade-Offs

Time-Space Trade-Offs
Theorem A : Any protocol using s < ½ log log n states per node and solving

majority with discrepancy ε must have expected stabilization time  
> n / (2s + εn)2.

Time-Space Trade-Offs

• In particular:
• If s = constant and εn = constant, then stabilization time linear in n
• If s = O(loglog n) and εn = constant, then stabilization time > n / polylog n

Theorem A : Any protocol using s < ½ log log n states per node and solving
majority with discrepancy ε must have expected stabilization time  

> n / (2s + εn)2.

Time-Space Trade-Offs

• In particular:
• If s = constant and εn = constant, then stabilization time linear in n
• If s = O(loglog n) and εn = constant, then stabilization time > n / polylog n

Theorem A : Any protocol using s < ½ log log n states per node and solving
majority with discrepancy ε must have expected stabilization time  

> n / (2s + εn)2.

Complex molecules are needed for  
deterministic computation.

Discussion

Discussion
Molecular computation is fertile ground  

for algorithmic research.

Discussion
Molecular computation is fertile ground  

for algorithmic research.

There are inherent space-time trade-offs when designing
deterministic population protocols.

.

Discussion
Molecular computation is fertile ground  

for algorithmic research.

There are inherent space-time trade-offs when designing
deterministic population protocols.

.

Open Challenges:
• Tighter trade-off bounds
• Other problems: plurality, approximate counting
• Modeling faulty interactions (leaks)
• Large-scale simulation of molecular algorithms

Leader Election
• Input: All nodes start in the same initial state
• Output:

Algorithm Number of States Convergence Time

Trivial Leader Election 2 Ω(n2)

Leader-Minion [AG, ICALP 2015] O(log3 n) O(log3 n)

Lottery Leader Election
[AAEGR16]

O(log2 n) O(log5.3 n loglogn)

Leader Election
• Input: All nodes start in the same initial state
• Output:
• Exactly one node is in a “leader” state,

remains leader forever

Algorithm Number of States Convergence Time

Trivial Leader Election 2 Ω(n2)

Leader-Minion [AG, ICALP 2015] O(log3 n) O(log3 n)

Lottery Leader Election
[AAEGR16]

O(log2 n) O(log5.3 n loglogn)

The Impossibility Result

Theorem A : Any protocol using < ½ log log n states per node
and electing L leaders will have

expected stabilization time > n / (C polylog n L2).

The Impossibility Result

• Example:
• O(log log n) states / node, one leader
• Stabilization time > n / polylog n (quasi-linear)
• Generalizes a recent result by Doty and Soloveichik [DISC15]

to super-constant states

Theorem A : Any protocol using < ½ log log n states per node
and electing L leaders will have

expected stabilization time > n / (C polylog n L2).

Bonus: A Cute Algorithm
• The goal: approximate n
• The state:

• A flip bit F, initially 0
• A counter “variable” C, initially 0

• The algorithm:
• Stage 1: do four interactions, updating F = 1 – F’
• Stage 2: increment counter C until you first see F’ = 1
• Stage 3: exchange C with interaction partner, setting C = max (C, C’)

• The guarantee:
• The convergence value is  

(1 – eps) log n < C < (1 + eps) log n,  
with high probability

