Molecular Computation An Algorithmic Approach

Rati Gelashvili

Joint work with Dan Alistarh (ETH), David Eisenstat (Google), James Aspnes (Yale), Milan Vojnovic (MSR), Ron Rivest (MIT)

Ingredients:

Ingredients:

Nodes

Ingredients:

Nodes Communication

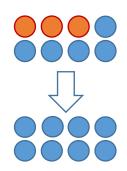
Ingredients:

Nodes Communication Computation

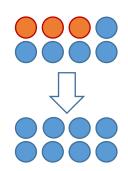
- Nodes are simple, identical agents
 - Each node is *the same* finite state automaton
 - For example: a molecule

- Nodes are simple, identical agents
 - Each node is *the same* finite state automaton
 - For example: a molecule
- Interactions are *pairwise*, and follow a *fair scheduler*
 - Usually considered *uniform random*
 - Nodes update their state following interactions

- Nodes are simple, identical agents
 - Each node is *the same* finite state automaton
 - For example: a molecule
- Interactions are *pairwise*, and follow a *fair scheduler*
 - Usually considered *uniform random*
 - Nodes update their state following interactions
- Computation is performed collectively
 - The system *should converge* to configurations satisfying meaningful predicates
 - No "fixed" decision time



- Nodes are simple, identical agents
 - Each node is *the same* finite state automaton
 - For example: a molecule
- Interactions are *pairwise*, and follow a *fair scheduler*
 - Usually considered *uniform random*
 - Nodes update their state following interactions
- Computation is performed collectively
 - The system *should converge* to configurations satisfying meaningful predicates
 - No "fixed" decision time
- A.k.a. Chemical Reaction Networks



Complexity

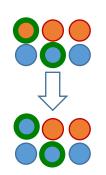
1. Time

• Round = a single pair interacts

• Chosen uniformly at random

Parallel convergence time

- **#rounds** to convergence / **# nodes**
- Alternative continuous-time definition exists



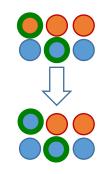
Complexity

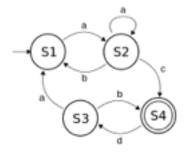
1. Time

- Round = a single pair interacts
 - Chosen uniformly at random
- Parallel convergence time
 - #rounds to convergence / # nodes
 - Alternative continuous-time definition exists

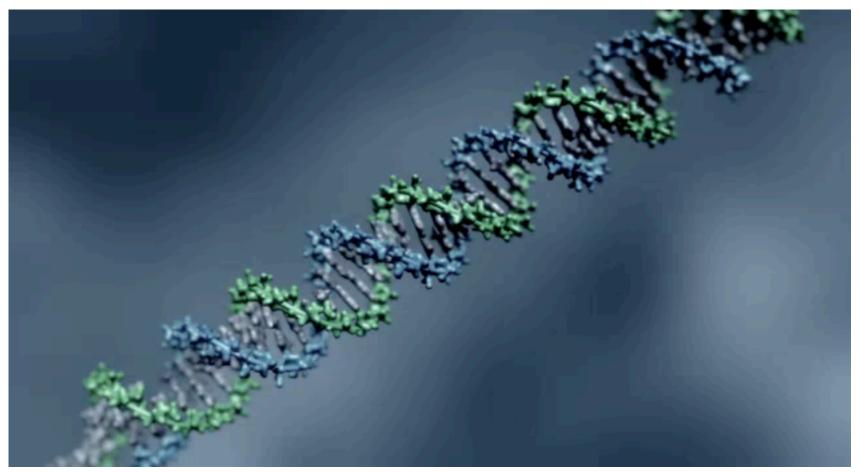
2. Space

- Number of *distinct states* per automaton
- Alternatively, #memory bits to encode state



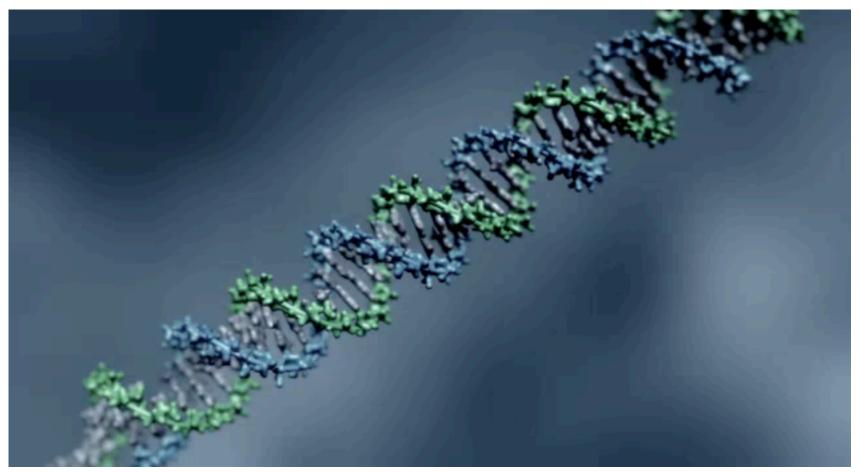


More Precisely: Communication



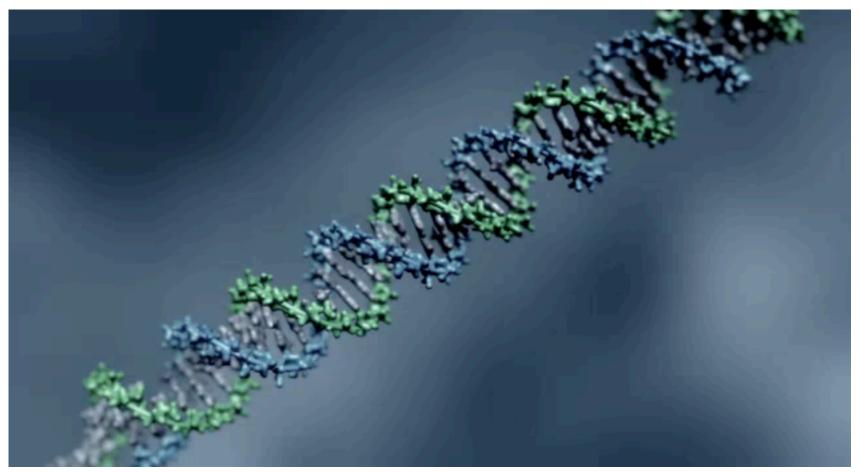
Courtesy of the Microsoft Research Biological Computation Group

More Precisely: Communication



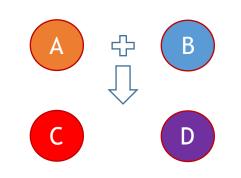
Courtesy of the Microsoft Research Biological Computation Group

More Precisely: Communication

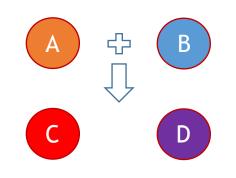


Courtesy of the Microsoft Research Biological Computation Group

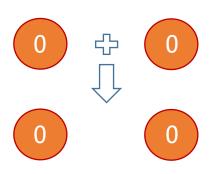
What can we compute? We can perform interactions of the type:

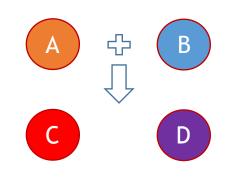


- Initial states: 0 or 1
- Final state:
 - If there exists a 1, then all 1.
 - Otherwise, all 0
- Protocol:

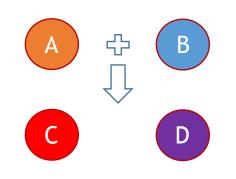


- Initial states: 0 or 1
- Final state:
 - If there exists a 1, then all 1.
 - Otherwise, all 0
- Protocol:

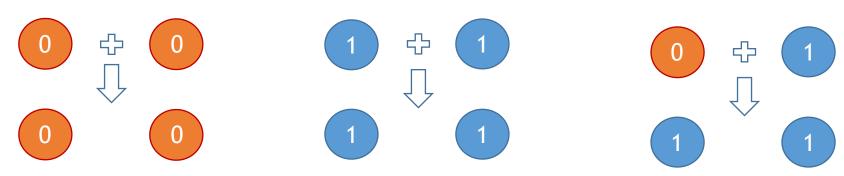


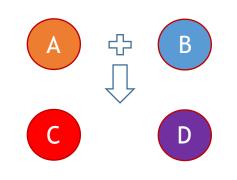


- Initial states: 0 or 1
- Final state:
 - If there exists a 1, then all 1.
 - Otherwise, all 0
- Protocol:

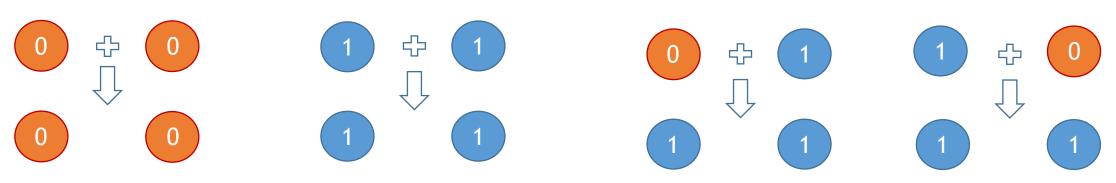


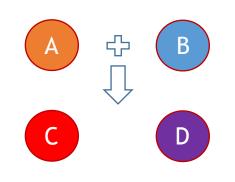
- Initial states: 0 or 1
- Final state:
 - If there exists a 1, then all 1.
 - Otherwise, all 0
- Protocol:





- Initial states: 0 or 1
- Final state:
 - If there exists a 1, then all 1.
 - Otherwise, all 0
- Protocol:

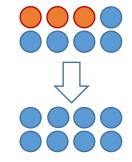




The Majority Function

Majority ("Consensus")

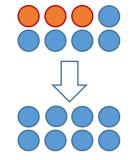
- Initial states A, B
- Output:
 - A if #A > #B initially.
 - B, otherwise.



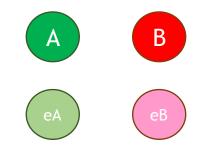
The Majority Function

Majority ("Consensus")

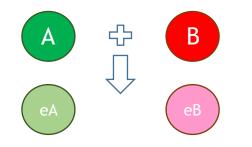
- Initial states A, B
- Output:
 - A if #A > #B initially.
 - B, otherwise.
- Fundamental task
 - Complexity: [AAE08] & [DV12]; [PVV09] & [MNRS14]
 - Natural computation: the cell cycle switch implements approximate majority [CC12]
 - Implementation in DNA: [CDS+13, Nature Nanotechnology]

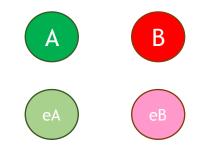


- 4-State Exact Majority [PVV09] [MNRS14]
- Protocol:

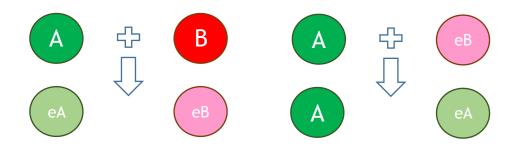


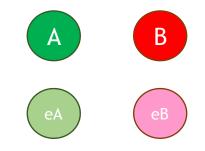
4-State Exact Majority [PVV09] [MNRS14]



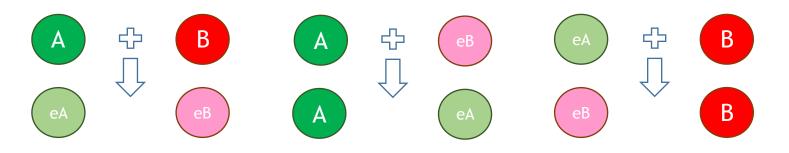


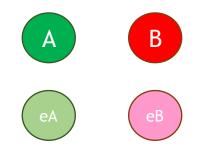
4-State Exact Majority [PVV09] [MNRS14]



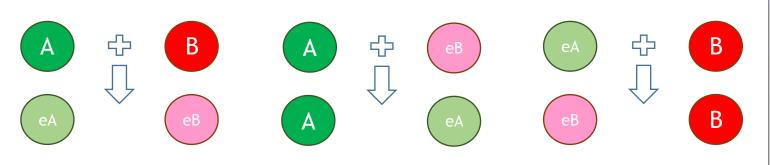


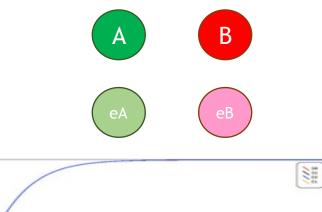
4-State Exact Majority [PVV09] [MNRS14]

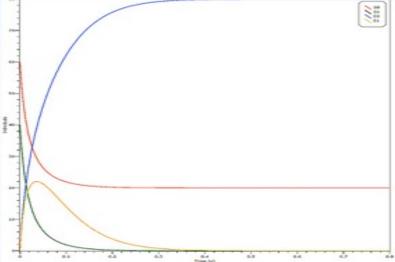




4-State Exact Majority [PVV09] [MNRS14]

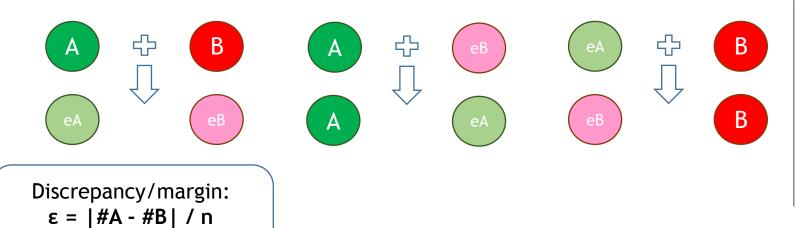


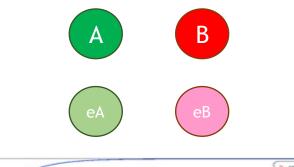


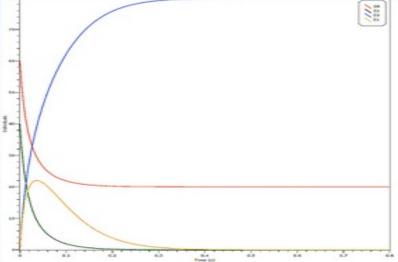


- 4-State Exact Majority [PVV09] [MNRS14]
- Protocol:

Can be as small as $\epsilon = O(1 / n)$.

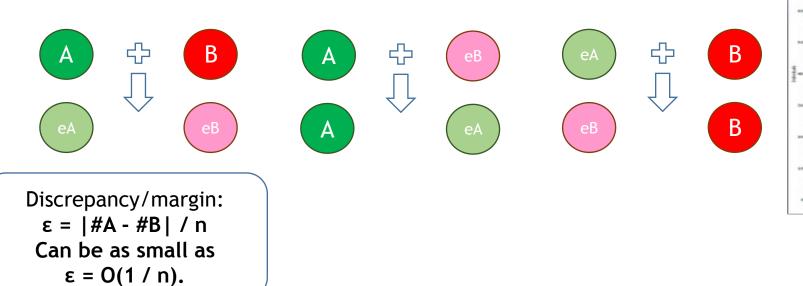




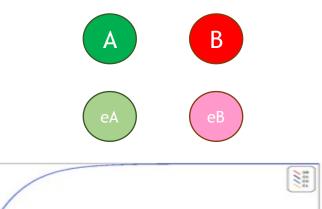


4-State Exact Majority [PVV09] [MNRS14]

• Protocol:



<u>Theorem</u>: Given n nodes and discrepancy ε, the running time of 4EM is O((log n) / ε).

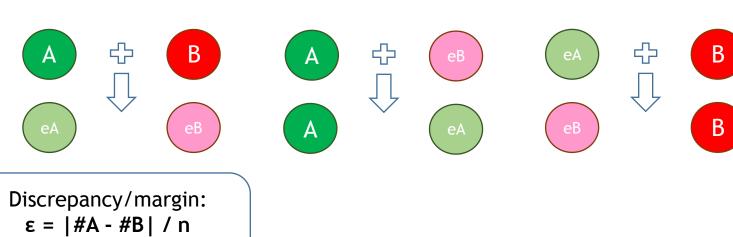


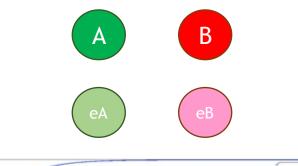
0.4

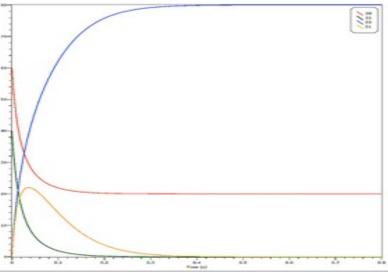
- 4-State Exact Majority [PVV09] [MNRS14]
- Protocol:

Can be as small as

 $\epsilon = O(1 / n).$

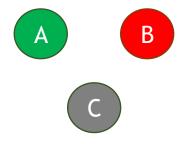




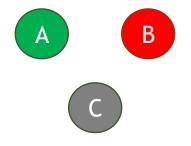


Theorem: Given n nodes and discrepancy ε, the running time of 4EM is O((log n) / ε).

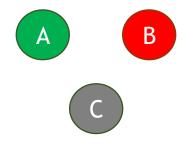
Can be $\Theta(n \log n)$ if $\epsilon = \text{constant} / n$.



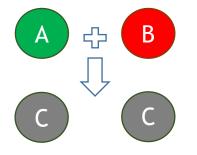
• 3-state Approximate Majority [AAE08] [DV12]

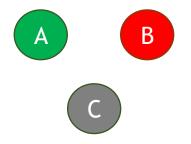


- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:

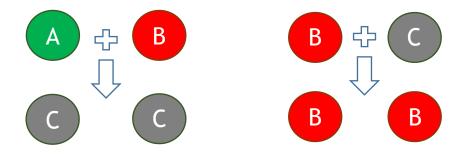


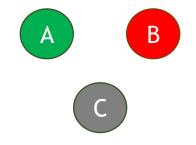
- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:



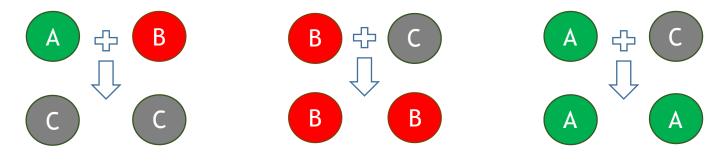


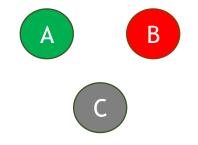
- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:



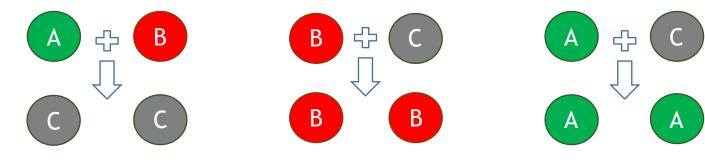


- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:





- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:



• Execution:

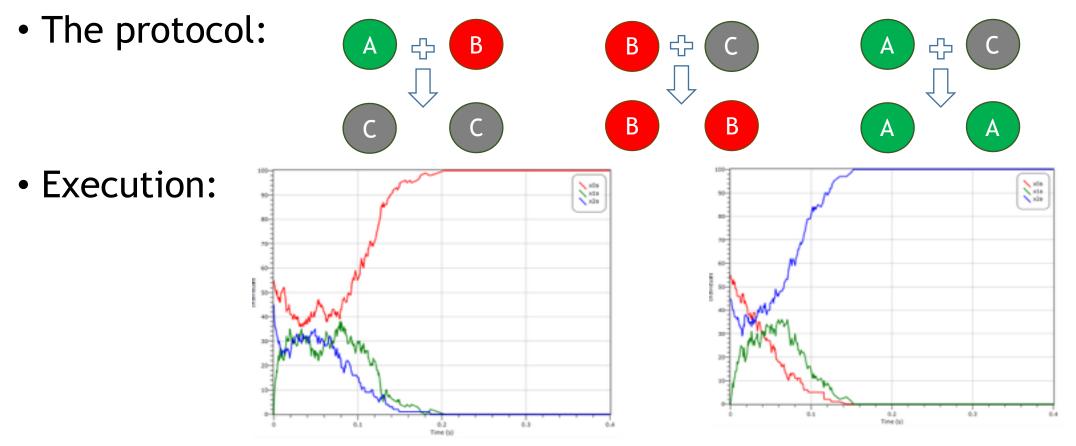
- 3-state Approximate Majority [AAE08] [DV12]
- The protocol: C ÷ В В ÷ ÷ В В A Α С C • Execution: xite xite xite 0.2

Time (b)

В

C

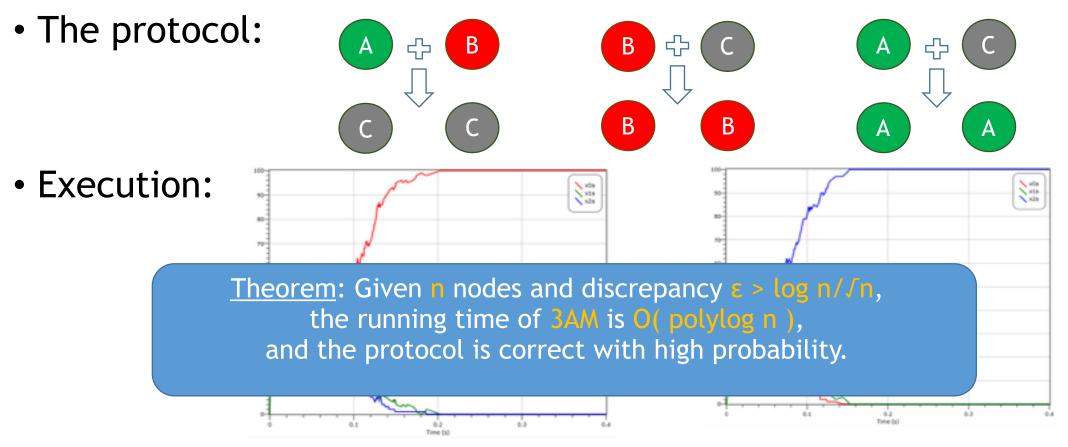
• 3-state Approximate Majority [AAE08] [DV12]



В

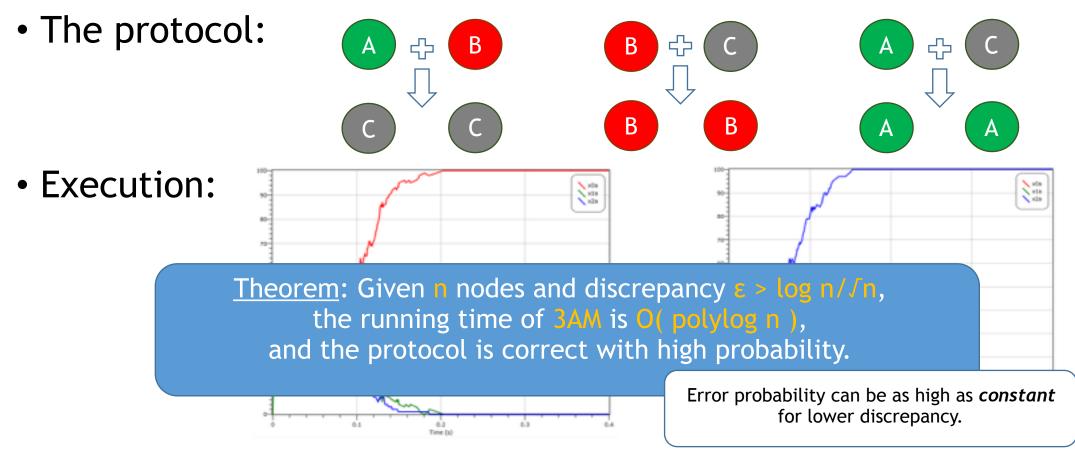
C

• 3-state Approximate Majority [AAE08] [DV12]



В

• 3-state Approximate Majority [AAE08] [DV12]



В

The Status

Algorithm	Reliability	Speed
The Four-State Protocol	Exact	Slow (super-linear)
The Three-State Protocol	Flaky (Up to Constant Error)	Fast (poly-logarithmic)

Average&Conquer

Algorithm	Reliability	Speed
The Four-State Protocol	Exact	Slow (super-linear)
The Three-State Protocol	Flaky (Up to Constant Error)	Fast (poly-logarithmic)
Average&Conquer [PODC 2015]	Exact	Fast (poly-logarithmic)

Average&Conquer

Algorithm	Reliability	Speed
The Four-State Protocol	Exact	Slow (super-linear)
The Three-State Protocol	Flaky (Up to Constant Error)	Fast (poly-logarithmic)
Average&Conquer [PODC 2015] (Super-Constant State Space)	Exact	Fast (poly-logarithmic)

The Plan

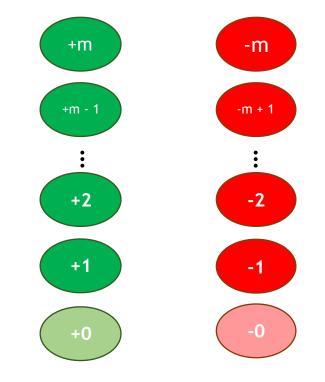
- Population Protocols
- The Majority Problem
 - 4EM
 - 3AM
 - Average-and-Conquer (AVC)
 - Quantized AVC
- Impossibility Results
- Open Questions
- Leader Election Problem

Simplified AVC: Main Ideas

- Each state corresponds to a value ("confidence level")
 - Strong states (non-negative value):
 - Positive -> A
 - Negative -> B
 - Weak: value +/- 0
- All nodes start with absolute value **m > 0**
 - +m if A
 - -m if B
- Two interaction types:
 - Averaging: strong (non-zero) nodes average out their values
 - Conquer: strong (non-zero) nodes bring weak nodes to "their side"
- Output:
 - If positive or +0, then A
 - If negative or -0, then B

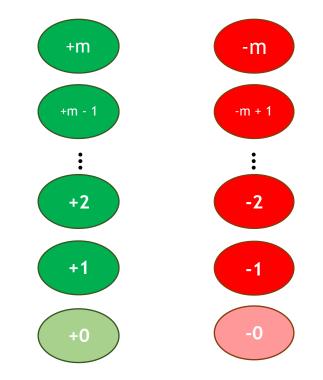
AVC in Action

Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).



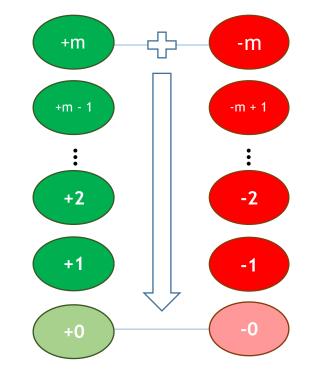
Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:



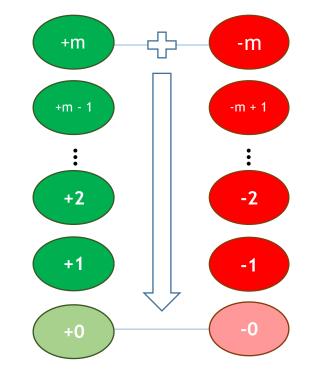
Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:



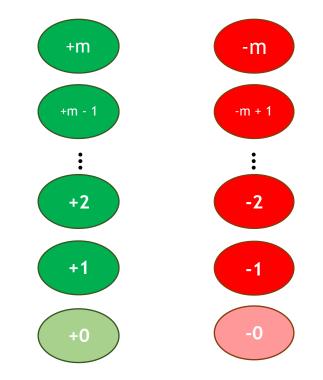
Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:



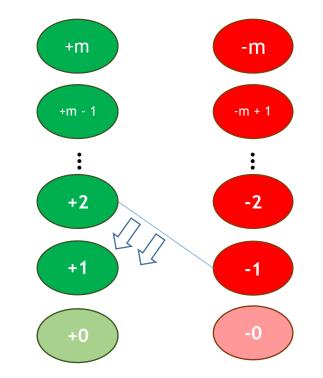
Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:



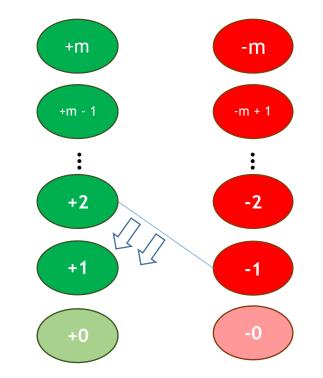
Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:



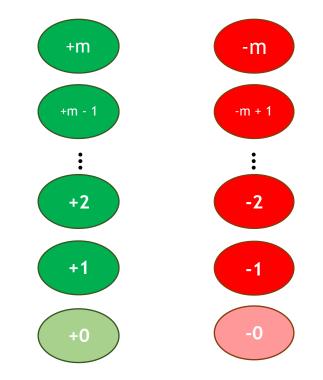
Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:



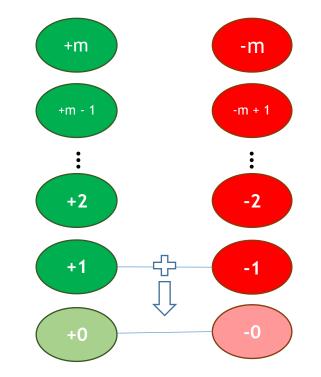
Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:



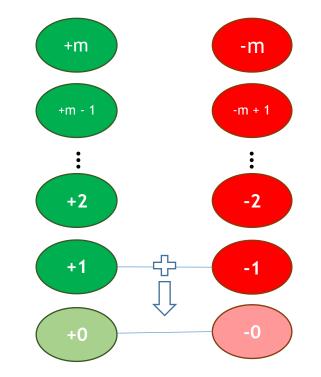
Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:



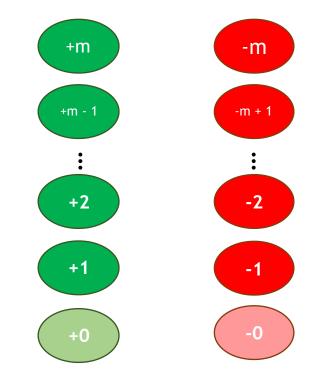
Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:



Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

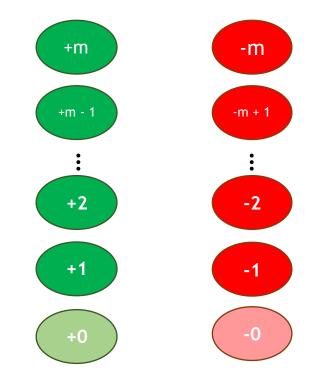
Averaging:



Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:

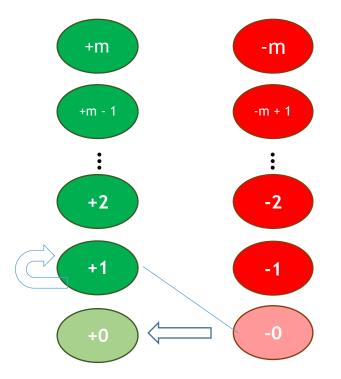
- Whenever two strong nodes meet, they average values **Conquer**:
- Strong nodes sway weak nodes towards their decision.



Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:

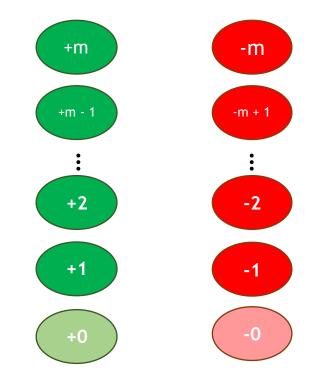
- Whenever two strong nodes meet, they average values **Conquer:**
- Strong nodes sway weak nodes towards their decision.



Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:

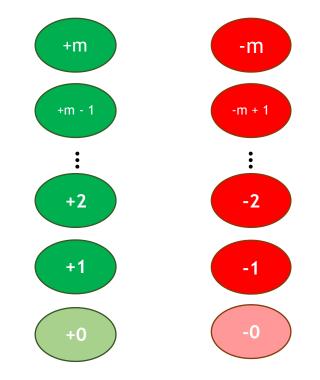
- Whenever two strong nodes meet, they average values **Conquer**:
- Strong nodes sway weak nodes towards their decision.



Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values **Conquer:**
- Strong nodes sway weak nodes towards their decision.

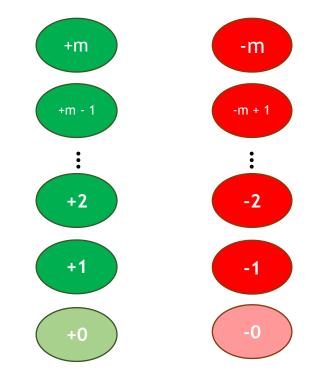


Note: For m = 1, we obtain a variant of 4EM.

Initially: +m or -m, odd integers Strong states: non-zero absolute value. Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values **Conquer:**
- Strong nodes sway weak nodes towards their decision.



Note: For m = 1, we obtain a variant of 4EM.

Disclaimer: original protocol is more complicated for technical reasons

<u>Theorem 1 [AGV15]</u>: Given fixed m < n, AVC solves majority exactly in expected parallel time O(log n / (m ε) + log n log m), using s = O(m + log n log m) total states.

<u>Theorem 1 [AGV15]</u>: Given fixed m < n, AVC solves majority exactly in expected parallel time O(log n / (m ε) + log n log m), using s = O(m + log n log m) total states.</p>

• In short:

- If $m \approx 1 / \epsilon$, then running time is always **poly-logarithmic**
- If $\epsilon = 1 / n$, then m needs to be **linear** in n
- 10²³ molecules -> O(10²³) states?!

- 10²³ molecules -> O(23² states)
- The idea: quantize integer states to powers of two

<u>Theorem 1 [AGV15]</u>: Given fixed m < n, AVC solves majority exactly in expected parallel time O(log n / (m ε) + log n log m), using s = O(m + log n log m) total states.</p>

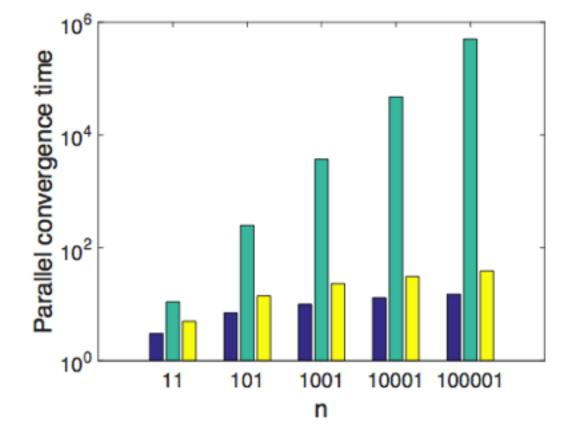
• In short:

- If $m \approx 1 / \epsilon$, then running time is always **poly-logarithmic**
- If $\epsilon = 1 / n$, then m needs to be **linear** in n
- 10²³ molecules -> O(10²³) states?!

<u>Theorem 2 [AAEGR16]:</u> logAVC solves majority exactly in expected parallel time O(log³ n), using s = O(log² n) total states.

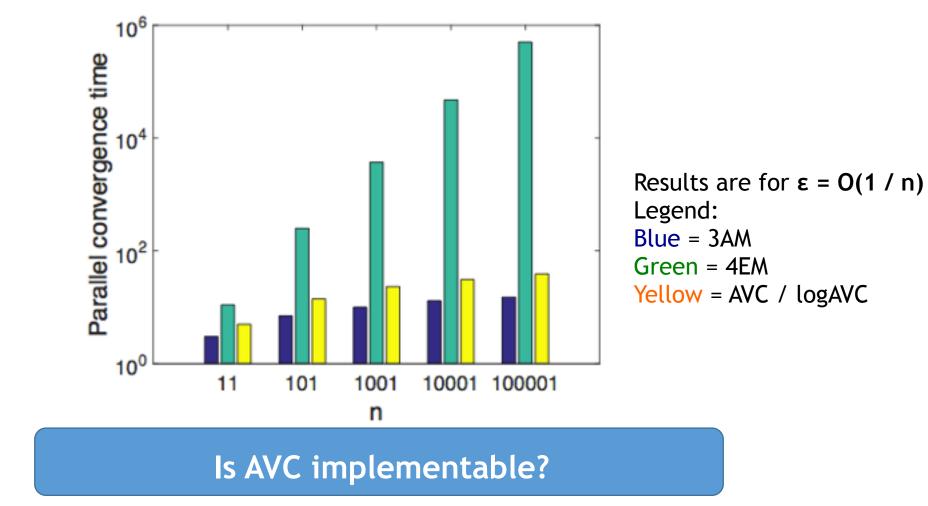
- 10²³ molecules -> O(23² states)
- The idea: quantize integer states to powers of two

Is AVC any good?

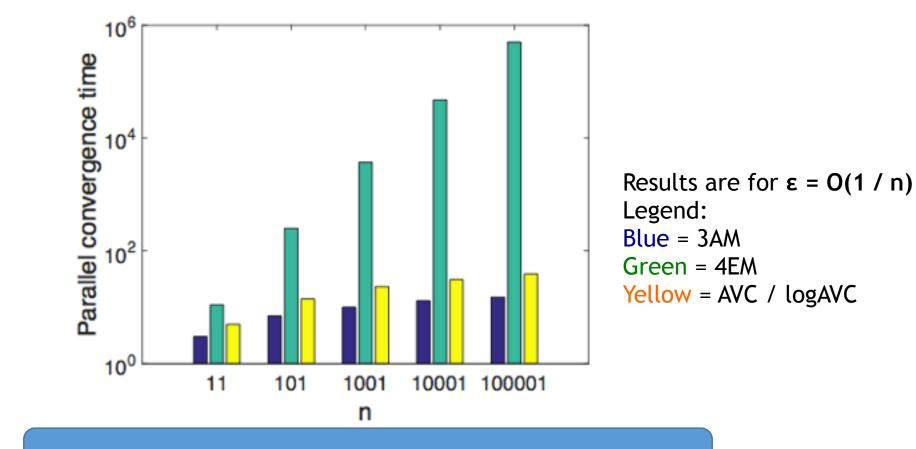


Results are for ε = O(1 / n) Legend: Blue = 3AM Green = 4EM Yellow = AVC / logAVC

Is AVC any good?



Is AVC any good?



Is AVC implementable?

Challenging: currently, small constant number of states implementable.

<u>Theorem A</u>: Any protocol using $s < \frac{1}{2} \log \log n$ states per node and solving majority with discrepancy ϵ must have expected stabilization time > n / ($2^5 + \epsilon n$)².

<u>Theorem A</u>: Any protocol using $s < \frac{1}{2} \log \log n$ states per node and solving majority with discrepancy ϵ must have expected stabilization time $> n / (2^{2} + \epsilon n)^{2}$.

- In particular:
 - If s = constant and εn = constant, then stabilization time linear in n
 - If s = O(loglog n) and $\epsilon n = constant$, then stabilization time > n / polylog n

<u>Theorem A</u>: Any protocol using $s < \frac{1}{2} \log \log n$ states per node and solving majority with discrepancy ε must have expected stabilization time $> n / (2^{2} + \varepsilon n)^{2}$.

- In particular:
 - If s = constant and $\epsilon n = constant$, then stabilization time linear in n
 - If s = O(loglog n) and $\epsilon n = constant$, then stabilization time > n / polylog n

Complex molecules are needed for deterministic computation.

Discussion

Molecular computation is fertile ground for algorithmic research.

Discussion

Molecular computation is fertile ground for algorithmic research.

There are inherent space-time trade-offs when designing deterministic population protocols.

Discussion

Molecular computation is fertile ground for algorithmic research.

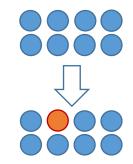
There are inherent space-time trade-offs when designing deterministic population protocols.

Open Challenges: Tighter trade-off bounds

- Other problems: plurality, approximate counting
 - Modeling faulty interactions (leaks)
 - Large-scale simulation of molecular algorithms

Leader Election

- Input: All nodes start in the same initial state
- Output:



Algorithm	Number of States	Convergence Time
Trivial Leader Election	2	$\Omega(n^2)$
Leader-Minion [AG, ICALP 2015]	O(log ³ n)	O(log ³ n)
Lottery Leader Election [AAEGR16]	O(log ² n)	O(log ^{5.3} n loglogn)

Leader Election

- Input: All nodes start in the same initial state
- Output:
 - Exactly one node is in a "leader" state, remains leader forever



Algorithm	Number of States	Convergence Time
Trivial Leader Election	2	Ω(n²)
Leader-Minion [AG, ICALP 2015]	O(log ³ n)	O(log ³ n)
Lottery Leader Election [AAEGR16]	O(log ² n)	O(log ^{5.3} n loglogn)

The Impossibility Result

<u>Theorem A</u>: Any protocol using < ½ log log n states per node and electing L leaders will have expected stabilization time > n / (C polylog n L²).

The Impossibility Result

<u>Theorem A</u>: Any protocol using < ½ log log n states per node and electing L leaders will have expected stabilization time > n / (C polylog n L²).

- Example:
 - O(log log n) states / node, one leader
 - Stabilization time > n / polylog n (quasi-linear)
 - Generalizes a recent result by Doty and Soloveichik [DISC15] to super-constant states

Bonus: A Cute Algorithm

- The goal: approximate **n**
- The state:
 - A flip bit F, initially 0
 - A counter "variable" C, initially 0
- The algorithm:
 - Stage 1: do four interactions, updating F = 1 F'
 - Stage 2: increment counter C until you first see F' = 1
 - Stage 3: exchange C with interaction partner, setting C = max (C, C')
- The guarantee: