Molecular Computation An Algorithmic Approach

Rati Gelashvili

Joint work with
Dan Alistarh (ETH), David Eisenstat (Google), James Aspnes (Yale), Milan Vojnovic (MSR), Ron Rivest (MIT)

Distributed Systems

Ingredients:

Distributed Systems

Ingredients:

Nodes

Distributed Systems

Ingredients:

Nodes
Communication

Distributed Systems

Ingredients:

Nodes
Communication
Computation

Computational Model Population Protocols [AADFP'04]

Computational Model Population Protocols [AADFP'04]

- Nodes are simple, identical agents
- Each node is the same finite state automaton
- For example: a molecule

Computational Model Population Protocols [AADFP'04]

- Nodes are simple, identical agents
- Each node is the same finite state automaton
- For example: a molecule
- Interactions are pairwise, and follow a fair scheduler
- Usually considered uniform random
- Nodes update their state following interactions

Computational Model Population Protocols [AADFP'04]

- Nodes are simple, identical agents
- Each node is the same finite state automaton
- For example: a molecule
- Interactions are pairwise, and follow a fair scheduler
- Usually considered uniform random
- Nodes update their state following interactions
- Computation is performed collectively
- The system should converge to configurations satisfying meaningful predicates
- No "fixed" decision time

Computational Model Population Protocols [AADFP'04]

- Nodes are simple, identical agents
- Each node is the same finite state automaton
- For example: a molecule
- Interactions are pairwise, and follow a fair scheduler
- Usually considered uniform random
- Nodes update their state following interactions
- Computation is performed collectively
- The system should converge to configurations satisfying meaningful predicates
- No "fixed" decision time
- A.k.a. Chemical Reaction Networks

Complexity

1. Time

- Round = a single pair interacts
- Chosen uniformly at random
- Parallel convergence time
- \#rounds to convergence / \# nodes
- Alternative continuous-time definition exists

Complexity

1. Time

- Round = a single pair interacts
- Chosen uniformly at random
- Parallel convergence time
- \#rounds to convergence / \# nodes
- Alternative continuous-time definition exists

2. Space

- Number of distinct states per automaton
- Alternatively, \#memory bits to encode state

More Precisely: Communication

Courtesy of the Microsoft Research Biological Computation Group

More Precisely: Communication

Courtesy of the Microsoft Research Biological Computation Group

More Precisely: Communication

Courtesy of the Microsoft Research Biological Computation Group

What can we compute?

We can perform interactions of the type:

What can we compute?

We can perform interactions of the type:
Example: the OR function

- Initial states: 0 or 1

- Final state:
- If there exists a 1 , then all 1.
- Otherwise, all 0
- Protocol:

What can we compute?

We can perform interactions of the type:
Example: the OR function

- Initial states: 0 or 1
- Final state:
- If there exists a 1 , then all 1.
- Otherwise, all 0
- Protocol:

ऊ 0

What can we compute?

We can perform interactions of the type:
Example: the OR function

- Initial states: 0 or 1 ち
- Final state:
- If there exists a 1 , then all 1.
- Otherwise, all 0
- Protocol:

What can we compute?

We can perform interactions of the type:
Example: the OR function

- Initial states: 0 or 1
- Final state:
- If there exists a 1 , then all 1.
- Otherwise, all 0
- Protocol:

What can we compute?

We can perform interactions of the type:
Example: the OR function

- Initial states: 0 or 1
- Final state:
- If there exists a 1 , then all 1.
- Otherwise, all 0
- Protocol:

1

The Majority Function

Majority ("Consensus")

- Initial states A, B
- Output:
- A if \#A > \#B initially.
- B, otherwise.

The Majority Function

Majority ("Consensus")

- Initial states A, B
- Output:
- A if \#A > \#B initially.
- B, otherwise.
- Fundamental task
- Complexity: [AAE08] \& [DV12]; [PVV09] \& [MNRS14]
- Natural computation: the cell cycle switch implements approximate majority [CC12]
- Implementation in DNA: [CDS+13, Nature Nanotechnology]

Solving Majority

4-State Exact Majority [PVV09] [MNRS14]

- Protocol:

Solving Majority

4-State Exact Majority [PVV09] [MNRS14]

- Protocol:

Solving Majority

4-State Exact Majority [PVV09] [MNRS14]

- Protocol:

Solving Majority

4-State Exact Majority [PVV09] [MNRS14]

- Protocol:

Solving Majority

4-State Exact Majority [PVV09] [MNRS14] - Protocol:

Solving Majority

4-State Exact Majority [PVV09] [MNRS14]

- Protocol:

Solving Majority

4-State Exact Majority [PVV09] [MNRS14] - Protocol:

Discrepancy/margin: $\varepsilon=|\# A-\# B| / n$ Can be as small as $\varepsilon=0(1 / n)$.

Theorem: Given n nodes and discrepancy ε, the running time of 4EM is $O((\log n) / \varepsilon)$.

Solving Majority

4-State Exact Majority [PVV09] [MNRS14]

- Protocol:

Discrepancy/margin: $\varepsilon=|\# \mathrm{~A}-\mathrm{\# B}| / \mathrm{n}$ Can be as small as $\varepsilon=0(1 / n)$.

Theorem: Given n nodes and discrepancy ε, the running time of 4EM is $O((\log n) / \varepsilon)$.

Can be $\Theta(n \log n)$ if $\varepsilon=$ constant $/ n$.

Solving Majority Approximately

B

- 3-state Approximate Majority [AAE08] [DV12]

Solving Majority Approximately

B

- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:

Solving Majority Approximately

- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:

Solving Majority Approximately

- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:

Solving Majority Approximately

- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:

Solving Majority Approximately

- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:

- Execution:

Solving Majority Approximately

- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:

- Execution:

Solving Majority Approximately

- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:
- Execution:

Solving Majority Approximately

- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:

Solving Majority Approximately

- 3-state Approximate Majority [AAE08] [DV12]
- The protocol:

- Execution:

Error probability can be as high as constant for lower discrepancy.

The Status

Algorithm	Reliability	Speed
The Four-State Protocol	Exact	Slow (super-linear)
The Three-State Protocol	Flaky	
	(Up to Constant Error)	Fast (poly-logarithmic)

Average\&Conquer

Algorithm	Reliability	Speed
The Four-State Protocol	Exact	Slow (super-linear)
The Three-State Protocol	Flaky (Up to Constant Error)	Fast (poly-logarithmic)
Average\&Conquer [PODC 2015]	Exact	Fast (poly-logarithmic)

Average\&Conquer

Algorithm	Reliability	Speed
The Four-State Protocol	Exact	Slow (super-linear)
The Three-State Protocol	Flaky	Fast
(Up to Constant Error)	Exact	Foly-logarithmic)

The Plan

- Population Protocols
- The Majority Problem
- 4EM
- 3AM
- Average-and-Conquer (AVC)
- Quantized AVC
- Impossibility Results
- Open Questions
- Leader Election Problem

Simplified AVC: Main Ideas

- Each state corresponds to a value ("confidence level")
- Strong states (non-negative value):
- Positive -> A
- Negative -> B
- Weak: value $+/-0$
- All nodes start with absolute value $\mathbf{m}>\mathbf{0}$
- +m if A
- -m if B
- Two interaction types:
- Averaging: strong (non-zero) nodes average out their values
- Conquer: strong (non-zero) nodes bring weak nodes to "their side"
- Output:
- If positive or +0 , then A
- If negative or -0 , then B

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values Conquer:
- Strong nodes sway weak nodes towards their decision.

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values Conquer:
- Strong nodes sway weak nodes towards their decision.

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values Conquer:
- Strong nodes sway weak nodes towards their decision.

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values Conquer:
- Strong nodes sway weak nodes towards their decision.

Note: For $m=1$, we obtain a variant of 4EM.

AVC in Action

Initially: +m or -m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-).

Averaging:

- Whenever two strong nodes meet, they average values Conquer:
- Strong nodes sway weak nodes towards their decision.

Note: For $m=1$, we obtain a variant of 4EM.

Disclaimer: original protocol is more complicated for technical reasons

Summing up

Summing up

Theorem 1 [AGV15]: Given fixed $m<n$, AVC solves majority exactly in
expected parallel time $O(\log n /(m \varepsilon)+\log n \log m)$, using $s=O(m+\log n \log m)$ total states.

Summing up

Theorem 1 [AGV15]: Given fixed $\mathrm{m}<\mathrm{n}$, AVC solves majority exactly in

 expected parallel time $O(\log n /(m \varepsilon)+\log n \log m)$, using $s=0(m+\log n \log m)$ total states.- In short:
- If $m \approx 1 / \varepsilon$, then running time is always poly-logarithmic
- If $\varepsilon=1 / n$, then m needs to be linear in n
- 10^{23} molecules -> $\mathrm{O}\left(10^{23}\right)$ states?!
- 10^{23} molecules -> $\mathrm{O}\left(23^{2}\right.$ states)
- The idea: quantize integer states to powers of two

Summing up

Theorem 1 [AGV15]: Given fixed $\mathrm{m}<\mathrm{n}$, AVC solves majority exactly in expected parallel time $O(\log n /(m \varepsilon)+\log n \log m)$, using $s=O(m+\log n \log m)$ total states.

- In short:
- If $m \approx 1 / \varepsilon$, then running time is always poly-logarithmic
- If $\varepsilon=1 / n$, then m needs to be linear in n
- 10^{23} molecules -> $\mathrm{O}\left(10^{23}\right)$ states?!

Theorem 2 [AAEGR16]: logAVC solves majority exactly in expected parallel time $\mathrm{O}\left(\log ^{3} \mathrm{n}\right)$, using $s=O\left(\log ^{2} n\right)$ total states.

- 10^{23} molecules -> $\mathrm{O}\left(23^{2}\right.$ states)
- The idea: quantize integer states to powers of two

Is AVC any good?

Results are for $\boldsymbol{\varepsilon}=\mathbf{O}(1 / n)$ Legend:
Blue = 3AM
Green $=4 \mathrm{EM}$
Yellow = AVC / logAVC

Is AVC any good?

Results are for $\varepsilon=0(1 / n)$ Legend:
Blue = 3AM
Green $=4 \mathrm{EM}$
Yellow = AVC / logAVC

Is AVC implementable?

Is AVC any good?

Results are for $\boldsymbol{\varepsilon}=\mathbf{O}(1 / n)$ Legend:
Blue = 3AM
Green $=4 \mathrm{EM}$
Yellow = AVC / logAVC

Is AVC implementable?

Challenging: currently, small constant number of states implementable.

Time-Space Trade-Offs

Time-Space Trade-Offs

Theorem A: Any protocol using $\mathrm{s}<1 / 2 \log \log \mathrm{n}$ states per node and solving majority with discrepancy ε must have expected stabilization time

$>n /\left(2^{5}+\varepsilon n\right)^{2}$.

Time-Space Trade-Offs

Theorem A: Any protocol using $\mathrm{s}<1 / 2 \log \log \mathrm{n}$ states per node and solving majority with discrepancy ε must have expected stabilization time

- In particular:
- If $\mathbf{s}=$ constant and $\boldsymbol{\varepsilon n}=$ constant, then stabilization time linear in \mathbf{n}
- If $\mathbf{s}=\mathbf{O}(\log \log \mathbf{n})$ and $\boldsymbol{\varepsilon} \mathbf{n}=$ constant, then stabilization time $>\mathbf{n} /$ polylog \mathbf{n}

Time-Space Trade-Offs

Theorem A: Any protocol using $\mathrm{s}<1 / 2 \log \log \mathrm{n}$ states per node and solving majority with discrepancy ε must have expected stabilization time
 ``` > n / (2 (2 + \varepsilonn)

\mp@subsup{)}{}{2```}
- In particular:
- If \(\mathbf{s}=\) constant and \(\boldsymbol{\varepsilon n}=\) constant, then stabilization time linear in \(\mathbf{n}\)
- If \(\mathbf{s}=\mathbf{O}(\log \log \mathbf{n})\) and \(\boldsymbol{\varepsilon} \mathbf{n}=\) constant, then stabilization time \(>\mathbf{n} /\) polylog \(\mathbf{n}\)

\section*{Complex molecules are needed for deterministic computation.}

Discussion

\section*{Discussion}

\section*{Molecular computation is fertile ground for algorithmic research.}

\section*{Discussion}

\section*{Molecular computation is fertile ground for algorithmic research.}

There are inherent space-time trade-offs when designing deterministic population protocols.

\section*{Discussion}

Molecular computation is fertile ground for algorithmic research.

There are inherent space-time trade-offs when designing deterministic population protocols.

Open Challenges:
Tighter trade-off bounds
- Other problems: plurality, approximate counting

Modeling faulty interactions (leaks)
Large-scale simulation of molecular algorithms

\section*{Leader Election}
- Input: All nodes start in the same initial state
- Output:
\begin{tabular}{|c|c|c|}
\hline Algorithm & Number of States & Convergence Time \\
\hline Trivial Leader Election & 2 & \(\Omega\left(n^{2}\right)\) \\
\hline Leader-Minion [AG, ICALP 2015] & \(\mathrm{O}\left(\log ^{3} \mathrm{n}\right)\) & \(\mathrm{O}\left(\log ^{3} \mathrm{n}\right)\) \\
\hline \begin{tabular}{c}
Lottery Leader Election \\
[AAEGR16]
\end{tabular} & \(\mathrm{O}\left(\log ^{2} \mathrm{n}\right)\) & \(\mathrm{O}\left(\log ^{5.3} \mathrm{n}\right.\) loglogn \()\) \\
\hline
\end{tabular}

\section*{Leader Election}
- Input: All nodes start in the same initial state
- Output:
- Exactly one node is in a "leader" state, remains leader forever
\begin{tabular}{|c|c|c|}
\hline Algorithm & Number of States & Convergence Time \\
\hline Trivial Leader Election & 2 & \(\Omega\left(n^{2}\right)\) \\
\hline \begin{tabular}{c}
Leader-Minion [AG, ICALP 2015]
\end{tabular} & \(\mathrm{O}\left(\log ^{3} n\right)\) & \(\mathrm{O}\left(\log ^{3} \mathrm{n}\right)\) \\
\hline \begin{tabular}{c}
Lottery Leader Election \\
[AAEGR16]
\end{tabular} & \(\mathrm{O}\left(\log ^{2} n\right)\) & \(\mathrm{O}\left(\log ^{5.3} \mathrm{n}\right.\) loglogn \()\) \\
\hline
\end{tabular}

\section*{The Impossibility Result}

Theorem A: Any protocol using < \(1 / 2 \log \log n\) states per node and electing \(L\) leaders will have
expected stabilization time > n / (C polylog n L²).

\section*{The Impossibility Result}

\section*{Theorem A: Any protocol using < \(1 / 2 \log \log n\) states per node and electing \(L\) leaders will have expected stabilization time > n / (C polytog \(\left.n \mathrm{~L}^{2}\right)\).}
- Example:
- O(\(\log \log n\)) states / node, one leader
- Stabilization time > n / polylog n (quasi-linear)
- Generalizes a recent result by Doty and Soloveichik [DISC15] to super-constant states

\section*{Bonus: A Cute Algorithm}
- The goal: approximate \(\mathbf{n}\)
- The state:
- A flip bit F, initially 0
- A counter "variable" C, initially 0
- The algorithm:
- Stage 1: do four interactions, updating F = 1 - F'
- Stage 2: increment counter C until you first see F' = 1
- Stage 3: exchange \(C\) with interaction partner, setting \(C=\max \left(C, C^{\prime}\right)\)
- The guarantee:
- The convergence value is (1-eps) \(\log n<C<(1+e p s) \log n\), with high probability```

