
Molecular Computation  
An Algorithmic Approach

Rati Gelashvili  
 

Joint work with  
Dan Alistarh (ETH), David Eisenstat (Google),  

James Aspnes (Yale), Milan Vojnovic (MSR), Ron Rivest (MIT)



Distributed Systems

Ingredients:



Distributed Systems

Ingredients:

• Nodes



Distributed Systems

Ingredients:

• Nodes
• Communication



Distributed Systems

Ingredients:

• Nodes
• Communication
• Computation



Computational Model 
Population Protocols [AADFP’04]



Computational Model 
Population Protocols [AADFP’04]
• Nodes are simple, identical agents 

• Each node is the same finite state automaton 
• For example: a molecule  



Computational Model 
Population Protocols [AADFP’04]
• Nodes are simple, identical agents 

• Each node is the same finite state automaton 
• For example: a molecule  

• Interactions are pairwise, and follow a fair scheduler  
• Usually considered uniform random 
• Nodes update their state following interactions 



Computational Model 
Population Protocols [AADFP’04]
• Nodes are simple, identical agents 

• Each node is the same finite state automaton 
• For example: a molecule  

• Interactions are pairwise, and follow a fair scheduler  
• Usually considered uniform random 
• Nodes update their state following interactions 

• Computation is performed collectively 
• The system should converge to configurations  

satisfying meaningful predicates 
• No “fixed” decision time



Computational Model 
Population Protocols [AADFP’04]
• Nodes are simple, identical agents 

• Each node is the same finite state automaton 
• For example: a molecule  

• Interactions are pairwise, and follow a fair scheduler  
• Usually considered uniform random 
• Nodes update their state following interactions 

• Computation is performed collectively 
• The system should converge to configurations  

satisfying meaningful predicates 
• No “fixed” decision time

• A.k.a. Chemical Reaction Networks
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Complexity

1. Time 
• Round = a single pair interacts 
• Chosen uniformly at random

• Parallel convergence time
• #rounds to convergence / # nodes
• Alternative continuous-time definition exists

2.  Space 
• Number of distinct states per automaton
• Alternatively, #memory bits to encode state
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The Majority Function
Majority (“Consensus”) 
• Initial states A, B
• Output: 
• A if #A > #B initially. 
• B, otherwise.
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The Majority Function
Majority (“Consensus”) 
• Initial states A, B
• Output: 
• A if #A > #B initially. 
• B, otherwise.

• Fundamental task
• Complexity: [AAE08] & [DV12]; [PVV09] & [MNRS14]
• Natural computation:   

the cell cycle switch implements approximate majority [CC12]
• Implementation in DNA: [CDS+13, Nature Nanotechnology]
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• Protocol:
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Theorem: Given n nodes and discrepancy ε, the 
running time of 4EM is O( (log n) / ε ).

Can be ϴ( n log n ) if ε = constant / n.

Discrepancy/margin:  
ε = |#A - #B| / n 

Can be as small as  
ε = O(1 / n).
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Theorem: Given n nodes and discrepancy ε > log n/√n,  
the running time of 3AM is O( polylog n ),  

and the protocol is correct with high probability.

Error probability can be as high as constant 
for lower discrepancy.
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Average&Conquer

Algorithm Reliability Speed

The Four-State Protocol Exact Slow  
(super-linear)

The Three-State Protocol Flaky  
(Up to Constant Error)

Fast  
(poly-logarithmic)

Average&Conquer [PODC 2015] Exact Fast  
(poly-logarithmic)(Super-Constant State Space)  



The Plan

• Population Protocols 
• The Majority Problem 
• 4EM 
• 3AM 
• Average-and-Conquer (AVC) 
• Quantized AVC 

• Impossibility Results 
• Open Questions 
• Leader Election Problem



• Each state corresponds to a value (“confidence level”) 
• Strong states (non-negative value):  

• Positive -> A 
• Negative -> B 

• Weak: value +/- 0  
• All nodes start with absolute value m > 0 

• +m if A 
• -m if B 

• Two interaction types:  
• Averaging: strong (non-zero) nodes average out their values  
• Conquer: strong (non-zero) nodes bring weak nodes to “their side” 

• Output:  
• If positive or +0, then A 
• If negative or -0, then B

Simplified AVC: Main Ideas

+m -m
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AVC in Action
+m -m

+m - 1 -m + 1

… …

+2

+1

-2

-1

+0 -0

Initially: +m or –m, odd integers
Strong states: non-zero absolute value.
Weak states: value zero (+/-). 

Averaging: 
• Whenever two strong nodes meet, they average values
Conquer:
• Strong nodes sway weak nodes towards their decision. 

Note: For m = 1, we obtain  
a variant of 4EM.

Disclaimer: original protocol is more 
complicated for technical reasons
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Summing up

• In short:  
• If m ≈ 1 / ε, then running time is always poly-logarithmic 
• If ε = 1 / n, then m needs to be linear in n 
• 1023 molecules -> O( 1023 ) states?! 

• 1023 molecules -> O( 232 states ) 
• The idea: quantize integer states to powers of two

Theorem 1 [AGV15]: Given fixed m < n, AVC solves majority exactly in 
expected parallel time O( log n / (m ε) + log n log m ),  

using s = O( m + log n log m ) total states.

Theorem 2 [AAEGR16]: logAVC solves majority exactly in expected 
parallel time O( log3 n ),  

using s = O( log2 n ) total states.
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Is AVC any good?

Results are for ε = O(1 / n) 
Legend:  
Blue = 3AM 
Green = 4EM 
Yellow = AVC / logAVC

Is AVC implementable?
Challenging: currently, small constant 

number of states implementable.
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Time-Space Trade-Offs

• In particular:  
• If s = constant and εn = constant, then stabilization time linear in n  
• If s = O( loglog n ) and εn = constant, then stabilization time > n / polylog n

Theorem A : Any protocol using s < ½ log log n states per node and solving 
majority with discrepancy ε must have expected stabilization time  

> n / (2s + εn)2.

Complex molecules are needed for  
deterministic computation. 
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Discussion
Molecular computation is fertile ground  

for algorithmic research.

There are inherent space-time trade-offs when designing 
deterministic population protocols. 

. 

Open Challenges:  
• Tighter trade-off bounds 
• Other problems: plurality, approximate counting  
• Modeling faulty interactions (leaks) 
• Large-scale simulation of molecular algorithms



Leader Election
• Input: All nodes start in the same initial state
• Output:

Algorithm Number of States Convergence Time

Trivial Leader Election 2 Ω(n2)

Leader-Minion [AG, ICALP 2015] O(log3 n) O(log3 n)

Lottery Leader Election 
[AAEGR16] 

O(log2 n) O(log5.3 n loglogn)



Leader Election
• Input: All nodes start in the same initial state
• Output:
• Exactly one node is in a “leader” state,                                           

remains leader forever

Algorithm Number of States Convergence Time

Trivial Leader Election 2 Ω(n2)

Leader-Minion [AG, ICALP 2015] O(log3 n) O(log3 n)

Lottery Leader Election 
[AAEGR16] 

O(log2 n) O(log5.3 n loglogn)



The Impossibility Result

Theorem A : Any protocol using < ½ log log n states per node  
and electing L leaders will have  

expected stabilization time > n / (C polylog n L2).



The Impossibility Result

• Example:  
• O( log log n ) states / node, one leader  
• Stabilization time > n / polylog n (quasi-linear) 
• Generalizes a recent result by Doty and Soloveichik [DISC15] 

to super-constant states

Theorem A : Any protocol using < ½ log log n states per node  
and electing L leaders will have  

expected stabilization time > n / (C polylog n L2).



Bonus: A Cute Algorithm
• The goal: approximate n 
• The state: 

• A flip bit F, initially 0 
• A counter “variable” C, initially 0 

• The algorithm:  
• Stage 1: do four interactions, updating F = 1 – F’ 
• Stage 2: increment counter C until you first see F’ = 1 
• Stage 3: exchange C with interaction partner, setting C = max (C, C’) 

• The guarantee: 
• The convergence value is  

(1 – eps) log n < C < (1 + eps) log n,  
with high probability


