ANT-INSPIRED DENSITY ESTIMATION VIA RANDOM

 WALKSNancy Lynch, Cameron Musco, Hsin-Hao Su BDA 2016
July, 2016
Chicago, Illinois

1. Introduction

- Ants appear to use estimates of colony density (number of ants per unit area), in solving typical ant colony problems:
- Searching for a new nest: Ants decide to accept a nest when they detect that the ant density in the nest has become sufficiently high [Pratt 05].
- Engaging or retreating: Ants may decide to engage or retreat based on relative density of their own vs. an enemy colony [Adams 90] .
- Task allocation: Ants may choose tasks based on densities of ants already allocated to various tasks [Gordon 99], [Schafer, Holmes, Gordon 06].
- Estimate density based on encounter rates [Gordon, Paul, Thorpe 93], [Pratt 05].
- Q: How might this work, and how accurate are the estimates?

Density estimation in distributed systems

- Similarly, agents in distributed systems could use density estimates in solving distributed computing problems:
- Robot swarms:
- Robots can determine the frequency of certain properties within the swarm, such as detecting an environment event.
- Robots can allocate themselves to tasks, or distribute themselves evenly around an area.
- Social networks:
- One could estimate the size of a network by launching agents and observe how frequently they encounter others [Katzir, Liberty, Somekh 11].
- Estimating density is equivalent to:
- Estimating the number of agents, if the area is known, or
- Estimating the area, if the number of agents is known.

How we got interested:

- Distributed House-Hunting in Ant Colonies [Ghaffari, Lynch, Musco, Radeva PODC 15].
- Algorithm: Ants evaluate nest desirability by determining numbers of ants in the nests and how the numbers change over time.
- $O(\log n)$ time until termination.
- Approximately matching lower bound, $\Omega(\log n)$.
- This assumes that an ant can determine the number of ants in a nest precisely.
- Typical sort of assumption for distributed algorithms.
- Not realistic for ants: they cannot count precisely, they move,...
- Makes the algorithm too fragile, for a biological algorithm.
- Led us to study approximate counting, which could be implemented by estimating density.

Our latest algorithm

- Ant-Inspired Density Estimation via Random Walks [Lynch, Musco, Su PODC 16, arXiv]
- Uses encounter rates, as suggested by [Gordon, Paul, Thorpe 93], [Pratt 05].
- Specifically:
- Ants wander in a 2-D plane, using independent random walks.
- Each ant determines its number of encounters per unit time.
- Uses that as a density estimate (number of ants per unit area).
- Notes:
- This assumes that an ant can count its number of encounters, although ants cannot count precisely.
- Actually, the algorithm is not so fragile---approximate counting should be good enough.
- But for now, just pretend an ant can count its encounters precisely.

Our algorithm

- Geometry is important for our results.
- 2-dimensional plane.
- Discretize space: Describe the plane as a grid, with ants on the nodes.

- Then fold the grid into a torus:

Our algorithm

- Discretize time: Synchronous rounds.
- Algorithm:
- In each round, each ant takes a step in a random direction, sees how many ants it encounters at the new position, and adds this number to a running count.
- After t rounds, it outputs the value of the ratio $\frac{\text { count }}{t}$.
- Claim: This is a good estimate for the ant density $d=\frac{n}{\text { area }}$.
- Q: How good?
- A: With "high probability", the estimate is correct to within a small inaccuracy ϵ, provided that the number t of rounds is at least a certain constant times $\frac{1}{d \epsilon^{2}}$ times $\log \left(\frac{1}{d \epsilon}\right)$.

2. Model and Problem

- Torus grid, A locations, \sqrt{A} by \sqrt{A}.
- Ants start at (uniformly, independently chosen) random locations.
- Then they work in synchronous rounds.
- At every round, each ant can choose (deterministically or probabilistically) to move one step in any direction, or to not move.
- In every round, each ant can detect how many other ants have reached the same grid location in the same round.
- It can also remember these numbers, e.g., by accumulating them in a single internal count variable.

The Density Estimation problem

- Each ant should continually output its latest estimate of the density $d=n / A$, where n is the total number of ants and A is the total number of grid points in the torus.
- Ants are not assumed to know n or A, and don't need to determine these---just the ratio.
- But if they happen to know n or A, the density estimate yields an estimate of the other.

3. The Algorithm

- Simplest possible!
- Ants are initially randomly placed at grid locations.
- Algorithm for ant a_{i} :
- Local variables:
- count, initially 0
- time, initially 0
- At every round:
- Set time $:=$ time +1 .
- Move in any of the four directions, each with probability $1 / 4$.
- See how many other ants have reached the same grid location in the same round.
- Add that number to count.
- Output estimate est $=\frac{\text { count }}{\text { time }}$.

The Algorithm

- Algorithm for ant a_{i} :
- At every round:
- Set time $:=$ time +1 .
- Move in any of the four directions, each with probability $1 / 4$.
- See how many other ants have reached the same grid location in the same round.
- Add that number to count.
- Output estimate est $=\frac{\text { count }}{\text { time }}$.
- Q: Why is $\frac{\text { count }}{\text { time }}$ a plausible estimate for density $d=n / A$?
- $d=n / A$ is the expected number of ants at any particular location at any particular time.
- $\frac{\text { count }}{\text { time }}$ is the average number any particular ant sees at any time.
- Those are the same.

4. The Analysis

- How does this behave?
- Theorem 1: The expected value of any ant's estimate is equal to the actual ant density $d=n / A$.
- As we just argued.
- But we also want a high-probability result: With "high probability", the estimate is correct to within ϵ, provided that the number t of rounds is "sufficiently large".
- Having the right expectation doesn't automatically imply high probability that our estimate is close to the expectation.

Analysis

- High-probability result: With "high probability", the estimate is correct to within ϵ, provided that the number t of rounds is "sufficiently large".
- In completely-connected graphs, a highprobability result follows easily:
- Any ant is equally likely to go anywhere at each round.
- Occurrences of encounters are essentially independent at each round.

- Standard probability results (Chernoff bounds) yield a good high-probability result:
- Theorem 2 (for complete graphs): With "high probability", the estimate is correct to within ϵ, provided that the number t of rounds is at least a certain constant times $\frac{1}{d \epsilon^{2}}$.

Analysis

- We say that the complete graph has fast mixing time, meaning there is little correlation between successive locations for an ant.
- On the other hand, the torus grid graph has slow mixing time--strong correlation between successive locations for an ant.
- Thus, when ant a_{i} encounters ant a_{j} in some round, it is likely to encounter it again in the following rounds.
- High variance in time between successive encounters.
- Still, we obtain:
- Theorem 3 (for torus grid graphs): With "high probability", the estimate is correct to within ϵ, provided that the number t of rounds is at least a certain constant times $\frac{1}{d \epsilon^{2}}$ times $\log \left(\frac{1}{d \epsilon}\right)$.

Analysis

- Theorem 3 (for torus grid graphs): With "high probability", the estimate
 is correct to within ϵ, provided that the number t of rounds is at least a constant times $\frac{1}{d \epsilon^{2}}$ times $\log \left(\frac{1}{d \epsilon}\right)$.
- Proof:
- Calculations, based on bounding the moments of the distribution of numbers of encounters.
- See [Lynch, Musco, Su, PODC 16, arXiv] for details.
- Key Lemma 4 (Re-collision bound): If a_{i} and a_{j} collide in round r, then the probability that they collide again in round $r+m$ is (approximately) $\Theta\left(\frac{1}{m+1}\right)+O\left(\frac{1}{A}\right)$.

5. Discussion

- We have shown that a very simple random exploration algorithm for the 2-dimensional plane gives accurate estimates of colony density, even though collisions at successive rounds are not independent.
- May be useful for understanding insect behavior:
- Searching for a new nest
- Engaging or retreating
- Allocating ants to tasks
- And for distributed computing:
- Robot swarms
- Estimating the size of a large social network
- See [Lynch, Musco, Su 16] for some examples.

Results: Other graph classes

- Density estimation for other classes of graphs:
- Rings
- Higher-dimensional tori
- Regular expanders
- Hypercubes

- The key in each case is a re-collision bound, e.g., for a ring:
- Key Lemma (Re-collision bound): If a_{i} and a_{j} collide in round r, then the probability that they collide again in round $r+m$ is (approximately) $\Theta\left(\frac{1}{\sqrt{m}+1}\right)+O\left(\frac{1}{A}\right)$.
- We use a general result that converts re-collision bounds to bounds for density estimation.

Results: Network size estimation

- Estimate the size (area) of a social network by regarding it as a large directed graph, edges corresponding to network links.
- Algorithm:
- Launch a number k of agents to follow links randomly and uniformly.
- See how often the agents collide.
- Use this to produce an estimate of density, which automatically yields an estimate of size since we know k.
- Issues:
- Graph isn't regular, unlike grid. Compensate by using degree weights.
- Initial distribution:
- Can't place agents uniformly on nodes.
- Instead, place them according to stationary distribution of a random walk of the network.
- Implement by using an initial "burn-in" period.

Future work: Robustness

- Inexact counting of collisions:
- Ants cannot count exact numbers of encounters.
- Consider approximate counting, e.g., to within a factor of 2.
- How does this affect the bounds?
- Inexact probabilities for choosing directions
- Dynamic setting:
- What happens if the number of agents, or the network, or both, change during execution of the algorithm?
- Adjust the estimation procedure?

Future work: Ant house-hunting

- [Ghaffari, Lynch, Musco, Radeva PODC 15].
- Ants evaluate nest desirability by determining the numbers of ants in the nests and how the numbers change over time.
- Assumes ants can count the number of ants in a nest exactly.
- Now reconsider house-hunting algorithms using inexact estimates of ant density instead of exact counts.
- Implement these estimates using our density-estimation algorithms.
- Q: How exactly do the algorithms fit together?

Thank you!

