ANT-INSPIRED DENSITY ESTIMATION VIA RANDOM WALKS

Nancy Lynch, Cameron Musco, Hsin-Hao Su BDA 2016 July, 2016 Chicago, Illinois

1. Introduction

- Ants appear to use estimates of colony density (number of ants per unit area), in solving typical ant colony problems:
 - Searching for a new nest: Ants decide to accept a nest when they detect that the ant density in the nest has become sufficiently high [Pratt 05].
 - Engaging or retreating: Ants may decide to engage or retreat based on relative density of their own vs. an enemy colony [Adams 90].
 - Task allocation: Ants may choose tasks based on densities of ants already allocated to various tasks [Gordon 99], [Schafer, Holmes, Gordon 06].
- Estimate density based on encounter rates [Gordon, Paul, Thorpe 93], [Pratt 05].
- Q: How might this work, and how accurate are the estimates?

Density estimation in distributed systems

- Similarly, agents in distributed systems could use density estimates in solving distributed computing problems:
 - Robot swarms:
 - Robots can determine the frequency of certain properties within the swarm, such as detecting an environment event.
 - Robots can allocate themselves to tasks, or distribute themselves evenly around an area.
 - Social networks:
 - One could estimate the size of a network by launching agents and observe how frequently they encounter others [Katzir, Liberty, Somekh 11].
- Estimating density is equivalent to:
 - Estimating the number of agents, if the area is known, or
 - Estimating the area, if the number of agents is known.

How we got interested:

- Distributed House-Hunting in Ant Colonies [Ghaffari, Lynch, Musco, Radeva PODC 15].
 - Algorithm: Ants evaluate nest desirability by determining numbers of ants in the nests and how the numbers change over time.
 - $O(\log n)$ time until termination.
 - Approximately matching lower bound, $\Omega(\log n)$.
- This assumes that an ant can determine the number of ants in a nest precisely.
 - Typical sort of assumption for distributed algorithms.
 - Not realistic for ants: they cannot count precisely, they move,...
 - Makes the algorithm too fragile, for a biological algorithm.
- Led us to study approximate counting, which could be implemented by estimating density.

Our latest algorithm

- Ant-Inspired Density Estimation via Random Walks [Lynch, Musco, Su PODC 16, arXiv]
- Uses encounter rates, as suggested by [Gordon, Paul, Thorpe 93], [Pratt 05].
- Specifically:
 - Ants wander in a 2-D plane, using independent random walks.
 - Each ant determines its number of encounters per unit time.
 - Uses that as a density estimate (number of ants per unit area).
- Notes:
 - This assumes that an ant can count its number of encounters, although ants cannot count precisely.
 - Actually, the algorithm is not so fragile---approximate counting should be good enough.
 - But for now, just pretend an ant can count its encounters precisely.

Our algorithm

- Geometry is important for our results.
- 2-dimensional plane.
- Discretize space: Describe the plane as a grid, with ants on the nodes.

Then fold the grid into a torus:

Our algorithm

- Discretize time: Synchronous rounds.
- Algorithm:
 - In each round, each ant takes a step in a random direction, sees how many ants it encounters at the new position, and adds this number to a running *count*.
 - After t rounds, it outputs the value of the ratio $\frac{count}{t}$.
- Claim: This is a good estimate for the ant density $d = \frac{n}{area}$.
- Q: How good?
- A: With "high probability", the estimate is correct to within a small inaccuracy ϵ , provided that the number t of rounds is at least a certain constant times $\frac{1}{d\epsilon^2}$ times $\log(\frac{1}{d\epsilon})$.

2. Model and Problem

- Torus grid, A locations, \sqrt{A} by \sqrt{A} .
- Ants start at (uniformly, independently chosen) random locations.

- Then they work in synchronous rounds.
- At every round, each ant can choose (deterministically or probabilistically) to move one step in any direction, or to not move.
- In every round, each ant can detect how many other ants have reached the same grid location in the same round.
- It can also remember these numbers, e.g., by accumulating them in a single internal *count* variable.

The Density Estimation problem

- Each ant should continually output its latest estimate of the density d = n/A, where *n* is the total number of ants and *A* is the total number of grid points in the torus.
- Ants are not assumed to know *n* or *A*, and don't need to determine these---just the ratio.
 - But if they happen to know *n* or *A*, the density estimate yields an estimate of the other.

3. The Algorithm

- Simplest possible!
- Ants are initially randomly placed at grid locations.
- Algorithm for ant a_i :
 - Local variables:
 - *count*, initially 0
 - *time*, initially 0
 - At every round:
 - Set time := time + 1.
 - Move in any of the four directions, each with probability 1/4.
 - See how many other ants have reached the same grid location in the same round.
 - Add that number to *count*.
 - Output estimate $est = \frac{count}{time}$.

The Algorithm

- Algorithm for ant a_i :
 - At every round:
 - Set time := time + 1.
 - Move in any of the four directions, each with probability 1/4.
 - See how many other ants have reached the same grid location in the same round.
 - Add that number to *count*.
 - Output estimate $est = \frac{count}{time}$.
- Q: Why is $\frac{count}{time}$ a plausible estimate for density d = n/A?
 - d = n/A is the expected number of ants at any particular location at any particular time.
 - $\frac{count}{time}$ is the average number any particular ant sees at any time.
 - Those are the same.

4. The Analysis

- How does this behave?
- Theorem 1: The expected value of any ant's estimate is equal to the actual ant density d = n/A.
- As we just argued.
- But we also want a high-probability result: With "high probability", the estimate is correct to within ϵ , provided that the number *t* of rounds is "sufficiently large".
- Having the right expectation doesn't automatically imply high probability that our estimate is close to the expectation.

Analysis

- High-probability result: With "high probability", the estimate is correct to within *ε*, provided that the number *t* of rounds is "sufficiently large".
- In completely-connected graphs, a highprobability result follows easily:
 - Any ant is equally likely to go anywhere at each round.
 - Occurrences of encounters are essentially independent at each round.

- Standard probability results (Chernoff bounds) yield a good high-probability result:
- Theorem 2 (for complete graphs): With "high probability", the estimate is correct to within ϵ , provided that the number t of rounds is at least a certain constant times $\frac{1}{d\epsilon^2}$.

Analysis

- We say that the complete graph has fast mixing time, meaning there is little correlation between successive locations for an ant.
- On the other hand, the torus grid graph has slow mixing time--strong correlation between successive locations for an ant.
- Thus, when ant a_i encounters ant a_j in some round, it is likely to encounter it again in the following rounds.
- High variance in time between successive encounters.
- Still, we obtain:
- Theorem 3 (for torus grid graphs): With "high probability", the estimate is correct to within ϵ , provided that the number t of rounds is at least a certain constant times $\frac{1}{d\epsilon^2}$ times $\log(\frac{1}{d\epsilon})$.

Analysis

• Theorem 3 (for torus grid graphs): With "high probability", the estimate is correct to within ϵ , provided that the number t of rounds is at least a constant times $\frac{1}{d\epsilon^2}$ times $\log(\frac{1}{d\epsilon})$.

• Proof:

- Calculations, based on bounding the moments of the distribution of numbers of encounters.
- See [Lynch, Musco, Su, PODC 16, arXiv] for details.
- Key Lemma 4 (Re-collision bound): If a_i and a_j collide in round r, then the probability that they collide again in round r + m is (approximately) $\Theta\left(\frac{1}{m+1}\right) + O\left(\frac{1}{A}\right)$.

5. Discussion

- We have shown that a very simple random exploration algorithm for the 2-dimensional plane gives accurate estimates of colony density, even though collisions at successive rounds are not independent.
- May be useful for understanding insect behavior:
 - Searching for a new nest
 - Engaging or retreating
 - Allocating ants to tasks
- And for distributed computing:
 - Robot swarms
 - Estimating the size of a large social network
 - See [Lynch, Musco, Su 16] for some examples.

Results: Other graph classes

- Density estimation for other classes of graphs:
 - Rings
 - Higher-dimensional tori
 - Regular expanders
 - Hypercubes

- The key in each case is a re-collision bound, e.g., for a ring:
- Key Lemma (Re-collision bound): If a_i and a_j collide in round r, then the probability that they collide again in round r + m is (approximately) $\Theta\left(\frac{1}{\sqrt{m+1}}\right) + O\left(\frac{1}{A}\right)$.
- We use a general result that converts re-collision bounds to bounds for density estimation.

Results: Network size estimation

- Estimate the size (area) of a social network by regarding it as a large directed graph, edges corresponding to network links.
- Algorithm:
 - Launch a number k of agents to follow links randomly and uniformly.
 - See how often the agents collide.
 - Use this to produce an estimate of density, which automatically yields an estimate of size since we know *k*.
- Issues:
 - Graph isn't regular, unlike grid. Compensate by using degree weights.
 - Initial distribution:
 - Can't place agents uniformly on nodes.
 - Instead, place them according to stationary distribution of a random walk of the network.
 - Implement by using an initial "burn-in" period.

Future work: Robustness

- Inexact counting of collisions:
 - Ants cannot count exact numbers of encounters.
 - Consider approximate counting, e.g., to within a factor of 2.
 - How does this affect the bounds?
- Inexact probabilities for choosing directions
- Dynamic setting:
 - What happens if the number of agents, or the network, or both, change during execution of the algorithm?
 - Adjust the estimation procedure?

Future work: Ant house-hunting

- [Ghaffari, Lynch, Musco, Radeva PODC 15].
- Ants evaluate nest desirability by determining the numbers of ants in the nests and how the numbers change over time.
- Assumes ants can count the number of ants in a nest exactly.
- Now reconsider house-hunting algorithms using inexact estimates of ant density instead of exact counts.
- Implement these estimates using our density-estimation algorithms.
- Q: How exactly do the algorithms fit together?

Thank you!

