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Decentralized	  Collec*ve	  Search	  Strategies	  
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How	  do	  effec*ve	  search	  strategies	  emerge	  from	  interac*ons	  among	  agents	  	  
and	  between	  agents	  and	  their	  environment?	  
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Why	  Swarms?	  



Flexible	  in	  mul*ple	  environments	  
Robust	  to	  individual	  failure	  and	  error	  

Scalable	  to	  large	  swarm	  sizes	  
	  

Simple	  Rules	  govern	  interac*ons	  among	  agents	  &	  with	  environment	  
Efficient	  &	  Effec8ve	  for	  spa*ally	  distributed	  tasks	  

Ants:	  most	  ecologically	  successful	  foragers	  on	  earth	  
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Why	  Swarms?	  



Focus	  on	  Collec*ve	  Foraging	  	  
	  

•  Search	  problems	  are	  ubiquitous	  in	  biology	  and	  computer	  science	  

•  Search	  for	  targets	  distributed	  in	  space	  
–  Distributed	  algorithms	  on	  dispersed	  agents	  increases	  search	  efficiency	  
–  Efficiency	  of	  search	  depends	  on	  target	  distribu*on	  
–  Requires	  environmental	  interac*on	  
–  May	  require	  retrieval	  and	  collec*on	  to	  a	  central	  loca*on	  

•  Collec*ve	  Search	  in	  robo*cs	  
–  Applica*ons:	  search	  &	  rescue,	  waste	  clean	  up,	  explora*on,	  monitoring	  
–  noise,	  stochas*city,	  error	  
–  balance	  spa*al	  extent	  vs	  thoroughness	  

•  explore	  vs	  exploit	  tradeoff	  



Flexibility	  in	  Mul*ple	  Environments	  
T	  cells	  in	  Lymph	  Nodes	  vs	  Lung	  

Search	  for	  Dendri8c	  Cells	  in	  Lymph	  Node	   Search	  for	  Infec8on	  in	  Lung	  



Flexibility	  in	  Mul*ple	  Environments	  
14,000	  ant	  species	  in	  diverse	  habitats	  



Flexibility	  in	  Mul*ple	  Environments	  
Robots	  collect	  from	  different	  target	  distribu*ons	  

12 Joshua P. Hecker & Melanie E. Moses

(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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Complexity	  Emerges	  from	  Simple	  Algorithms	  	  
in	  Complex	  Environments	  

Ants	  interact	  with	  
• Targets	  
– seeds	  

• Chemical	  Cues	  
– Pheromones	  

• Structural	  Features	  
– habitat	  

• Each	  other	  
– signaling	  
– contact	  rate	  sensing	  
– figh*ng	  
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Remember	  &	  Return	  	  
Site	  Fidelity	  

	  
Communicate	  
Pheromones	  

	  Count	  
Assess	  seed	  pile	  density

	  	  

	  Movement	  
Balances	  search	  

thoroughness	  vs	  extent	  	  
	  	  

Scalable,	  Flexible,	  Robust	  Foraging	  	  
from	  a	  simple	  repertoire	  of	  behaviors	  



[Fla11,	  Fla13,Let13]	  

Central	  Place	  Foraging	  Model	  
	  



Foraging	  success	  depends	  on	  	  
Interac*ons	  among	  behaviors	  &	  environment	  

Lay	  pheromone	  
Only	  if	  count	  >	  5	  	  

Lay	  pheromone	  	  
Whenever	  I	  find	  a	  seed	  

Appropriate	  communica*on	  depends	  
on	  what	  is	  sensed	  in	  the	  environment	  



START	  

END	  
When	  searching	  at	  random,	  	  
walk	  straight	  to	  search	  widely	  

Uninformed	  	  
Walk	  

START	  

END	  

Aner	  returning	  via	  site	  fidelity	  or	  	  
following	  a	  pheromone	  trail	  	  
Turn	  oKen	  to	  search	  thoroughly	  

Informed	  	  
Walk	  

Appropriate	  movement	  depends	  on	  what	  
has	  been	  communicated	  &	  remembered	  

Foraging	  success	  depends	  on	  	  
interac*ons	  among	  behaviors	  &	  environment	  

Movement	  balances	  the	  extensiveness	  and	  
thoroughness	  of	  search	  



GA	  tunes	  CPFA	  parameters	  to	  specific	  environments:	  
Behavioral	  strategies	  are	  evolved	  from	  a	  repertoire	  of	  behavioral	  primi*ves	  

[HecSI15]	  

Central	  Place	  Foraging	  Algorithm	  (CPFA)	  
Swarm Intell (2015) 9:43–70 51

Algorithm 1 Central-Place Foraging Algorithm
1: Disperse from nest to random location
2: while experiment running do
3: Conduct uninformed correlated random walk
4: if resource found then
5: Collect resource
6: Count number of resources c near current location l f
7: Return to nest with resource
8: if Pois(c, λlp) > U (0, 1) then
9: Lay pheromone to l f
10: end if
11: if Pois(c, λs f ) > U (0, 1) then
12: Return to l f
13: Conduct informed correlated random walk
14: else if pheromone found then
15: Travel to pheromone location l p
16: Conduct informed correlated random walk
17: else
18: Choose new random location
19: end if
20: end if
21: end while

• Search with informed walk: If the robot is informed about the location of resources (via
site fidelity or pheromones), it searches using an informed correlated random walk, where
the standard deviation σ is defined by Eq. 3:

σ = ω + (4π − ω)e−λid t (3)

The standard deviation of the successive turning angles of the informed random walk
decays as a function of time t , producing an initially undirected and localized search
that becomes more correlated over time. This time decay allows the robot to search locally
where it expects to find a resource, but to straighten its path and disperse to another location
if the resource is not found. If the robot discovers a resource, it will collect the resource by
adding it to a list of collected items, and transition to sensing the local resource density.
Robots that have not found a resource will give up searching and return to the nest with
probability pr .

• Sense local resource density: When the robot locates and collects a resource, it records a
count c of resources in the immediate neighborhood of the found resource. This count c
is an estimate of the density of resources in the local region.

• Return to nest: After sensing the local resource density, the robot returns to the nest. At the
nest, the robot uses c to decide whether to use information by (1) returning to the resource
neighborhood using site fidelity, or (2) following a pheromone waypoint. The robot may
also decide to communicate the resource location as a pheromone waypoint.

Information decisions are governed by parameterization of a Poisson cumulative distrib-
ution function (CDF) as defined by Eq. 4:

Pois(k, λ) = e−λ
⌊k⌋∑

i=0

λi

i ! (4)

The Poisson distribution represents the probability of a given number of events occurring
within a fixed interval of time. We chose this formulation because of its prevalence in previous
ant studies, e.g., researchers have observed Poisson distributions in the dispersal of foragers

123



•  Uninformed	  robots	  use	  a	  Correlated	  Random	  Walk:	  
•  Informed	  robots	  use	  a	  less	  correlated	  CRW:	  

8 Joshua P. Hecker & Melanie E. Moses

Table 1 Set of 7 CPFA parameters evolved by the GA

Parameter Description Initialization Function

ps Probability of switching to searching U(0,1)
pr Probability of returning to nest U(0,1)
ω Uninformed search variation U(0,4π)
λid Rate of informed search decay exp(5)
λs f Rate of site fidelity U(0,20)
λl p Rate of laying pheromone U(0,20)
λpd Rate of pheromone decay exp(10)

may set its search location using site fidelity or pheromone waypoints, as described
below.

• Travel to search site: The robot travels along the heading θ , continuing on this path
until it transitions to searching with probability ps.

• Search with uninformed walk: If the robot is not returning to a previously found re-
source location via site fidelity or pheromones, it begins searching using a correlated
random walk with fixed step size and direction θt at time t, defined by Equation ??:

θt =N (θt−1,ω) (1)

The standard deviation σ determines how correlated the direction of the next step is
with the direction of the previous step. Robots initially search for resources using an
uninformed correlated random walk, where σ is assigned a fixed value in Equation ??:

σ ← ω (2)

If the robot discovers a resource, it will collect the resource by adding it to a list of
collected items, and transition to sensing the local resource density. Robots that have
not found a resource will give up searching and return to the nest with probability pr .

• Search with informed walk: If the robot is informed about the location of resources
(via site fidelity or pheromones), it searches using an informed correlated random walk,
where the standard deviation σ is defined by Equation ??:

σ = ω +(4π−ω)e−λid t (3)

The standard deviation of the successive turning angles of the informed random walk
decays as a function of time t, producing an initially undirected and localized search
that becomes more correlated over time. This time decay allows the robot to search
locally where it expects to find a resource, but to straighten its path and disperse to
another location if the resource is not found. If the robot discovers a resource, it will
collect the resource by adding it to a list of collected items, and transition to sensing the
local resource density. Robots that have not found a resource will give up searching and
return to the nest with probability pr .

• Sense local resource density: When the robot locates and collects a resource, it records
a count c of resources in the immediate neighborhood of the found resource. This count
c is an estimate of the density of resources in the local region.

• Return to nest: After sensing the local resource density, the robot returns to the nest.
At the nest, the robot uses c to decide whether to use information by i) returning to the
resource neighborhood using site fidelity, or ii) following a pheromone waypoint. The
robot may also decide to communicate the resource location as a pheromone waypoint.

•  Informa*on	  decisions	  governed	  by	  a	  Poisson	  CDF:	  
-‐  Robots	  return	  to	  loca*on	  of	  discovered	  resource	  if	  the	  

count	  of	  nearby	  resources	  c	  is	  large	  

Beyond Pheromones: Error-Tolerant, Flexible, and Scalable Robot Swarms 9

Algorithm 1 Central-Place Foraging Algorithm
1: Disperse from nest to random location
2: while experiment running do
3: Conduct uninformed correlated random walk
4: if resource found then
5: Collect resource
6: Count number of resources c near current location l f

7: Return to nest with resource
8: if POIS(c,λl p)>U(0,1) then
9: Lay pheromone to l f

10: end if
11: if POIS(c,λs f )>U(0,1) then
12: Return to l f

13: Conduct informed correlated random walk
14: else if pheromone found then
15: Travel to pheromone location lp

16: Conduct informed correlated random walk
17: else
18: Choose new random location
19: end if
20: end if
21: end while

• Search with informed walk: If the robot is informed about the location of resources
(via site fidelity or pheromones), it searches using an informed correlated random walk,
where the standard deviation σ is defined by Equation 3:

σ = ω +(4π−ω)e−λid t (3)

The standard deviation of the successive turning angles of the informed random walk
decays as a function of time t, producing an initially undirected and localized search
that becomes more correlated over time. This time decay allows the robot to search
locally where it expects to find a resource, but to straighten its path and disperse to
another location if the resource is not found. If the robot discovers a resource, it will
collect the resource by adding it to a list of collected items, and transition to sensing the
local resource density. Robots that have not found a resource will give up searching and
return to the nest with probability pr .

• Sense local resource density: When the robot locates and collects a resource, it records
a count c of resources in the immediate neighborhood of the found resource. This count
c is an estimate of the density of resources in the local region.

• Return to nest: After sensing the local resource density, the robot returns to the nest.
At the nest, the robot uses c to decide whether to use information by i) returning to the
resource neighborhood using site fidelity, or ii) following a pheromone waypoint. The
robot may also decide to communicate the resource location as a pheromone waypoint.

Information decisions are governed by parameterization of a Poisson cumulative distri-
bution function (CDF) as defined by Equation 4:

POIS(c,λ ) = e−λ
⌊c⌋

∑
i=0

λ i

i!
(4)

The Poisson distribution represents the probability of a given number of events occurring
within a fixed interval of time. We chose this formulation because of its prevalence in pre-
vious ant studies, e.g., researchers have observed Poisson distributions in the dispersal of

•  Pheromone	  waypoints	  decay	  exponen*ally	  over	  *me:	  

10 Joshua P. Hecker & Melanie E. Moses

foragers (Hölldobler and Wilson 1978), the density of queens (Tschinkel and Howard 1983),
and the rate at which foragers return to the nest (Prabhakar et al 2012).

In the CPFA, an event corresponds to finding an additional resource in the immediate
neighborhood of a found resource. Therefore, the distribution POIS(c,λ ) describes the like-
lihood of finding at least c additional resources, as parameterized by λ . The robot returns to
a previously found resource location using site fidelity if the Poisson CDF, given the count
c of resources, exceeds a uniform random value: POIS(c,λs f ) > U(0,1). Thus, if c is large,
the robot is likely to return to the same location using site fidelity on its next foraging trip.
If c is small, it is likely not to return, and instead follows a pheromone to another location if
pheromone is available. If no pheromone is available, the robot will choose its next search
location at random. The robot makes a second independent decision based on the count c

of resources: it creates a pheromone waypoint for a previously found resource location if
POIS(c,λlp)> U(0,1).

Upon creating a pheromone waypoint, a robot transmits the waypoint to a list maintained
by a central server. As each robot returns to the nest, the server selects a waypoint from the
list (if available) and transmits it to the robot. New waypoints are initialized with a value of
1. The strength of the pheromone, γ , decays exponentially over time t as defined by Equation
5:

γ = e−λpdt (5)

Waypoints are removed once their value drops below a threshold of 0.001. We use the same
pheromone-like waypoints in simulation to replicate the behavior of the physical iAnts.

3.2 Genetic Algorithm

There are an uncountable number of foraging strategies that can be defined by the real-
valued CPFA parameter sets in Table 1 (even if the 7 parameters were limited to single
decimal point precision, there would be 710 possible strategies). We address this intractable
problem by using a GA to generate foraging strategies that maximize foraging efficiency for
a particular error model, resource distribution, and swarm size.

The GA evaluates the fitness of each strategy by simulating robots that forage using
the CPFA parameter set associated with each strategy. Fitness is defined as the foraging
efficiency of the robot swarm: the total number of resources collected by all robots in a fixed
time period. Because the fitness function must be evaluated many times, the simulation must
run quickly. Thus, we use a parsimonious simulation that uses a gridded, discrete world
without explicitly modeling sensors or collision detection. This simple fitness function also
helps to mitigate condition-specific idiosyncrasies and avoid overfitted solutions, a problem
noted by Francesca et al (2014).

We evolve a population of 100 simulated robot swarms for 100 generations using recom-
bination and mutation. Each swarm’s foraging strategy is randomly initialized using uniform
independent samples from the initialization function for each parameter (Table 1). Five pa-
rameters are initially sampled from a uniform distribution, U(a,b), and two from exponential
distributions, exp(x), within the stated bounds. Robots within a swarm use identical param-
eters throughout the hour-long simulated foraging experiment. During each generation, all
100 swarms undergo 8 fitness evaluations, each with different random placements drawn
from the specified resource distribution.

At the end of each generation, the fitness of each swarm is evaluated as the sum total of
resources collected in the 8 runs of a generation. Deterministic tournament selection with

-‐  Robots	  can	  use	  memory	  (site	  fidelity,	  λ	  =	  λsf)	  or	  communica*on	  
(pheromone-‐like	  waypoints,	  λ	  =	  λlp)	  
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Fig. 3 (a) State diagram describing the flow of behavior for individual robots during an experiment. (b) An
example of a single cycle through this search behavior. The robot begins its search at a central nest site (double
circle) and sets a search location. The robot then travels to the search site (solid line). Upon reaching the
search location, the robot searches for resources (dotted line) until a resource (square) is found and collected.
After sensing the local resource density, the robot returns to the nest (dashed line).

Table 1 Set of 7 CPFA parameters evolved by the GA

Parameter Description Initialization Function

ps Probability of switching to searching U(0,1)
pr Probability of returning to nest U(0,1)
ω Uninformed search variation U(0,4π)
λid Rate of informed search decay exp(5)
λs f Rate of site fidelity U(0,20)
λl p Rate of laying pheromone U(0,20)
λpd Rate of pheromone decay exp(10)

• Set search location: The robot starts at a central nest and selects a dispersal direction,
θ , initially from a uniform random distribution, U(0,2π). In subsequent trips, the robot
may set its search location using site fidelity or pheromone waypoints, as described
below.

• Travel to search site: The robot travels along the heading θ , continuing on this path
until it transitions to searching with probability ps.

• Search with uninformed walk: If the robot is not returning to a previously found re-
source location via site fidelity or pheromones, it begins searching using a correlated
random walk with fixed step size and direction θt at time t, defined by Equation 1:

θt =N (θt−1,σ ) (1)

The standard deviation σ determines how correlated the direction of the next step is
with the direction of the previous step. Robots initially search for resources using an
uninformed correlated random walk, where σ is assigned a fixed value in Equation 2:

σ ← ω (2)

If the robot discovers a resource, it will collect the resource by adding it to a list of
collected items, and transition to sensing the local resource density. Robots that have
not found a resource will give up searching and return to the nest with probability pr .

	  
GA-‐evolved	  CPFA	  

7	  CPFA	  parameters	  (real-‐valued,	  interact)	  
	  

Swarm Intell (2015) 9:43–70 51

Algorithm 1 Central-Place Foraging Algorithm
1: Disperse from nest to random location
2: while experiment running do
3: Conduct uninformed correlated random walk
4: if resource found then
5: Collect resource
6: Count number of resources c near current location l f
7: Return to nest with resource
8: if Pois(c, λlp) > U (0, 1) then
9: Lay pheromone to l f
10: end if
11: if Pois(c, λs f ) > U (0, 1) then
12: Return to l f
13: Conduct informed correlated random walk
14: else if pheromone found then
15: Travel to pheromone location l p
16: Conduct informed correlated random walk
17: else
18: Choose new random location
19: end if
20: end if
21: end while

• Search with informed walk: If the robot is informed about the location of resources (via
site fidelity or pheromones), it searches using an informed correlated random walk, where
the standard deviation σ is defined by Eq. 3:

σ = ω + (4π − ω)e−λid t (3)

The standard deviation of the successive turning angles of the informed random walk
decays as a function of time t , producing an initially undirected and localized search
that becomes more correlated over time. This time decay allows the robot to search locally
where it expects to find a resource, but to straighten its path and disperse to another location
if the resource is not found. If the robot discovers a resource, it will collect the resource by
adding it to a list of collected items, and transition to sensing the local resource density.
Robots that have not found a resource will give up searching and return to the nest with
probability pr .

• Sense local resource density: When the robot locates and collects a resource, it records a
count c of resources in the immediate neighborhood of the found resource. This count c
is an estimate of the density of resources in the local region.

• Return to nest: After sensing the local resource density, the robot returns to the nest. At the
nest, the robot uses c to decide whether to use information by (1) returning to the resource
neighborhood using site fidelity, or (2) following a pheromone waypoint. The robot may
also decide to communicate the resource location as a pheromone waypoint.

Information decisions are governed by parameterization of a Poisson cumulative distrib-
ution function (CDF) as defined by Eq. 4:

Pois(k, λ) = e−λ
⌊k⌋∑

i=0

λi

i ! (4)

The Poisson distribution represents the probability of a given number of events occurring
within a fixed interval of time. We chose this formulation because of its prevalence in previous
ant studies, e.g., researchers have observed Poisson distributions in the dispersal of foragers
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Each	  model	  run	  requires	  a	  set	  of	  input	  parameters	  	  [pt,	  ps,	  ω,	  λid,	  λlp,	  λsf,	  λfp]	  
Each	  individual	  in	  a	  colony	  is	  iden*cal	  

	  
Cross	  over	  and	  muta*on	  on	  parameters	  

	  	  	  	  	  	  G0:	  [pt,	  ps,	  ω,	  λid,	  λlp,	  λsf,	  λfp]	  x	  	  [pt,	  ps,	  ω,	  λid,	  λlp,	  λsf,	  λfp] 	  	  	  	  	  	  
	  	  	  	  	  	  G1: 	  	  	  	  	  	   	   	  [pt,	  ps,	  ω,	  λid,	  λlp,,λsf,	  λfp]	  	  

	  
100	  runs	  with	  different	  parameter	  sets	  (colonies)	  for	  100	  Genera*ons	  
Each	  colony,	  each	  genera*on,	  evaluated	  on	  8	  different	  target	  placements	  for	  1	  

simulated	  hour	  
Colonies	  with	  highest	  ‘fitness’	  (seeds	  collected)	  replicate	  into	  next	  genera*on	  

	  
Group	  Selec8on	  Experiments	  in	  silico	  evolve	  colonies	  to	  maximize	  foraging	  rate	  
	  

	  
GA	  selects	  parameters	  to	  maximize	  seeds	  

collected	  in	  fixed	  *me	  	  
	  



Complexity	  Emerges	  from	  Simple	  Algorithms	  	  
in	  Complex	  Environments	  

Robots	  interact	  with	  
•  Targets	  

–  April	  Tags	  
•  Virtual	  Pheromones	  

– wifi	  waypoints	  
•  Structural	  Features	  

–  Tag	  distribu*on	  
•  Each	  other	  

–  obstacle	  avoidance	  
–  contact	  rate	  sensing	  
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(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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•  Explore	  with	  correlated	  random	  walk	  	  
•  Es*mate	  number	  of	  resources	  by	  rota*ng	  360°	  
•  Return	  via	  memory	  or	  communica*on	  
•  Search	  thoroughly;	  gradually	  give	  up	  
•  Parameters	  governing	  movement,	  memory	  	  

	  &	  communica*on	  tuned	  in	  silico	  by	  GA	  

hTps://youtu.be/Cs6PlInKYH8	  



Complexity	  Emerges	  from	  Simple	  Algorithms	  	  
in	  Complex	  Environments	  

Robots	  interact	  with	  
•  Targets	  
– April	  Tags	  

• Virtual	  Pheromones	  
– error-‐prone	  waypoints	  
over	  wifi	  or	  BT	  

•  Structural	  Features	  
– Tag	  distribu*on	  

•  Each	  other	  
– obstacle	  avoidance	  
– contact	  rate	  sensing	  
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(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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Experimental	  Setup	  

Clustered	   Powerlaw-‐distributed	   Random	  

Physical	  foraging:	  
•  1	  hour	  
•  1,	  3,	  and	  6	  robots	  per	  swarm	  
•  100	  m2	  arena	  
•  256	  QR	  barcode	  tags	  
•  WiFi	  communica*on	  
•  Simulated	  retrieval	  via	  unique	  tag	  
•  Evolved	  behaviors	  transferred	  

from	  simulated	  to	  physical	  robots	  

Simulated	  foraging:	  
•  1	  (simulated)	  hour	  
•  1	  to	  768	  robots	  per	  swarm	  
•  125	  x	  125	  grid	  (1323	  x	  1323)	  
•  256	  resources	  (28,672)	  
•  Error	  model	  emulates	  sensor	  noise:	  

-‐  50%	  detec*on	  error	  
-‐  50	  –	  100	  cm	  posi*onal	  error	  

•  Cons*tutes	  fitness	  func*on	  for	  GA	  



iAnts	  adapt	  to	  their	  environment	  

[HecSI15]	  

In	  simula*on	  

Behaviors	  evolve	  that	  increase	  foraging	  rate	  in	  each	  environment	  
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•  Cluster-‐adapted	  swarms	  use	  less	  site	  fidelity	  (memory)	  and	  more	  
pheromone	  (communica*on)	  than	  power-‐law-‐adapted	  swarms	  

•  Random-‐adapted	  swarms	  rarely	  use	  either	  memory	  or	  communica*on	  

18 Joshua P. Hecker & Melanie E. Moses
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Fig. 10 For error-adapted swarms, (a) the probability of returning to a site and (b) the probability of laying
pheromone given the number of resources in the neighborhood of a found resource (Eq. 3).

parameters perform at 93% of the efficiency of cluster-adapted swarms on a clustered distri-
bution, and 96% of the efficiency of random-adapted swarms on a random distribution.

Figure 9 demonstrates that the GA is able to evolve both specialist and generalist strate-
gies. If the resource distribution is known a priori, then the robot swarm will be most ef-
ficient when using a specialist strategy adapted for that distribution. However, power-law-
adapted strategies function well on all three distributions because they are sufficiently gen-
eral – these swarms have evolved to efficiently collect both clustered resources and randomly
distributed resources. The GA evolves power-law-adapted strategies that use site fidelity
and pheromones, which are not necessary for foraging on random distributions, but they
allow swarms to exploit piled resources when present. These results suggest that power-
law-adapted strategies should be selected as a default behavior for swarms without a priori

knowledge of the resource distribution because they work well for both clustered and dis-
persed resources.

Figure 10 shows the probability of exploiting information about resource density in
the local neighborhood of a found resource by returning to the site via site fidelity (Fig.
10(a)) or laying pheromone (Fig. 10(b)). Swarms evolved for clustered distributions are
3.5 times less likely to return to a site via site fidelity with a single resource in the local
neighborhood, but 7.8 times more likely to lay pheromone, compared to swarms evolved for
power law distributions. Swarms evolved for random distributions have a significantly lower
probability of either returning to a site or laying pheromone.

While Figure 9 demonstrates that specialist strategies are most efficient, Figure 10 illus-
trates one way in which strategies are specialized. There are significant differences in how
each strategy evolves to use information: cluster-adapted strategies make most frequent use
of pheromone communication (Fig 10(b)), power-law-adapted strategies use mostly mem-
ory (site fidelity, Fig. 10(a)), and random-adapted strategies use information the least. For
low resource densities, strategies evolved for clustered distributions are more likely to lay
pheromones, and those evolved for power law distributions are more likely to use site fi-
delity. These strategies produced by the GA logically correspond with the resource distri-
bution for which they were evolved. All of the resources in the clustered distribution are
grouped into large piles, so finding a single resource indicates that additional resources are
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Flexibility:	  different	  behaviors	  	  
for	  different	  target	  distribu*ons	  



Error	  causes	  robots	  in	  clustered	  world	  to	  lay	  
more	  pheromone	  that	  evaporates	  slowly	  

	  
For	  par*ally	  clustered	  targets,	  the	  opposite	  

	  
For	  random	  targets,	  irrelevant	  
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Figure 5: Results for physical and simulated robots foraging
in a world with error using parameters adapted for a world
with error, and parameters adapted for an error-free world.
80% more resources are collected using error-adapted pa-
rameters in physical robot teams, and 16% more are col-
lected in simulated teams. Robots collected significantly
more resources in both cases. Physical and simulated robots
using error-adapted parameters are not significantly differ-
ent.

Discussion

Teams of physical and simulated robots used a central-place
foraging algorithm (CPFA) to search for resources with and
without sensor error. A genetic algorithm (GA) was used to
evolve parameter sets which corresponded to robot team be-
haviors inspired by seed-harvester ants. We considered two
types of error, positional error and resource detection error,
and we explored the effects of error on overall resource col-
lection and on individual evolved parameters. Error-adapted
parameters improved performance of physical and simulated
robots in worlds with error. We observed that teams of
robots in error-adapted simulations collected resources at the
same rate as physical robots.

Both positional and detection errors have the potential to
confound a robot’s ability to properly use information to
exploit resources clustered via site fidelity or pheromones.
Large positional errors in the estimation of resource loca-
tions can cause robots to perform informed random walks in
regions without resources, thereby wasting time in detailed
searches of the wrong areas. Errors in detecting resources
can cause robots to underestimate the numbers of resources
in a local area, so that robots fail to take advantage of mem-
ory or communication to return or recruit other agents to
resource-rich locations.

Evolutionary algorithms have the potential to mitigate
sensing errors by selecting for parameters which perform
optimally given imperfect conditions. For example, robots

experiencing errors in resource detection benefit from a
lower threshold of resource density detection for trigger-
ing laying of a pheromone trail. Robots with positional er-
rors perform better with a faster decaying informed random
walk, so that they quickly abandon detailed searches when
there is a high probability that resources are not in remem-
bered or communicated locations.

Parameter values for simulated robots foraging on ran-
dom, clustered, and power law distributed resources (Fig. 3)
illustrate the GA’s ability to evolve sets of behaviors for each
distribution. Parameters for clustered and power law distri-
butions are similar, demonstrating the ability of the GA to
focus on exploiting clumped resources when available. The
lack of clustering in the random distribution induces the GA
to effectively disable site fidelity and pheromone following
behaviors, thus causing the adapted robot teams to concen-
trate on random exploration.

Fitness curves for simulations with and without error (Fig.
4(a)) demonstrate the ability of the GA to reliably converge.
Parameter values (Fig. 4(b)) demonstrate the ability of the
GA to evolve distinct sets of behaviors for an error-free
world compared to a world with error.

Results for parameters swapped from error-free worlds
into worlds with error (Fig. 5) show that parameters adapted
for imperfect worlds outperformed parameters adapted for
perfect worlds. Teams of physical and simulated robots col-
lected similar numbers of resources, particularly when us-
ing parameters adapted for error. Thus, evolutionary meth-
ods effectively adapt robot behavior to sensor error. These
results also mirror observations from our previous work in
which genetic algorithms were used to evolve optimal pa-
rameter sets for specific types of resource distributions.

The work presented here motivates estimation of real
robot error, evolution of parameters to fit with that error, and
programming of those evolved parameters into real robots.
In future work, we will conduct additional physical and sim-
ulated robot experiments using different numbers and distri-
butions of resources, arena sizes, and numbers of robots to
test whether simulations and physical experiments continue
to correspond as closely as we have observed here.
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[Hec13,	  HecSI15]	  

Flexible	  response	  to	  error	  



Ta
rg
et
s	  c

ol
le
ct
ed

	  in
	  1
	  h
ou

r	  
Communica*on	  improves	  foraging	  

given	  clustered	  targets	  

single	  large	  pile	  



Ta
rg
et
s	  c

ol
le
ct
ed

	  in
	  1
	  h
ou

r	  
Communica*on	  improves	  foraging	  

given	  clustered	  targets	  

single	  large	  pile	  

Uninformed	  	  
walk	  

increases	  	  
search	  extent	  

Informed	  	  
walk	  

increases	  
search	  thoroughness	  



12 Joshua P. Hecker & Melanie E. Moses

(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.
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physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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Adap*ng	  movement	  to	  sensed	  resource	  density	  

improves	  search	  given	  small	  clusters	  



•  For	  a	  single	  cluster	  
–  pheromones:	  8	  *mes	  beTer	  than	  random	  

search	  	  
–  site	  fidelity:	  4	  *mes	  beTer	  than	  random	  

search	  
–  Value	  of	  informa*on	  declines	  exponen*ally	  	  
	  	  	  	  	  	  	  with	  the	  log	  of	  the	  number	  of	  resources	  

•  For	  many	  small	  clusters	  
–  adap*ve	  site	  fidelity	  is	  4	  *mes	  beTer	  than	  

random	  
•  For	  randomly	  distributed	  resources	  

–  informa*on	  is	  useless	  

Value	  of	  Communica*on	  depends	  on	  
informa*on	  in	  the	  environment	  

12 Joshua P. Hecker & Melanie E. Moses

(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[Fla15]	  



Analy*cal	  Model	  of	  Random	  Foraging	  

Diameter	  of	  a	  Pile	   Angle	  of	  a	  Pile	  

Probability	  of	  Hi|ng	  At	  Least	  One	  Pile	  

Expected	  Foraging	  Rate	  of	  n	  Ants	  



Analy*cal	  Model	  of	  Nest	  Recruitment	  

Value	  of	  a	  Discovery:	  	  
Amount	  Able	  to	  be	  Collected	  

Op*mal	  Scout	  Popula*on	  (x)	  

Expected	  Foraging	  Rate	  of	  n	  Ants	  

Value	  of	  nest	  recruitment	  

2np 
[Lev16]	  

•  Assump*ons	  eliminate	  interes*ng	  
environmental	  features	  

•  Results	  are	  sensi*ve	  to	  
–  op*mal	  scout	  number	  
–  *ming	  

•  Iden*fies	  a	  decrease	  in	  foraging	  
rate	  for	  recruitment	  given	  many	  
small	  piles—where	  adap*ve	  sf	  is	  
most	  useful	  



[Qi16]	  

Comparison	  to	  Determinis*c	  Search	  Naviga*ng	  Obstacles	  

CPFA	  Extensions	  

Clustering	  to	  Improve	  
Exhaus*ve	  search	  

Surprisingly	  efficient,	  error-‐tolerant,	  
but	  not	  scalable	  [Sto16]	  

[Hec15]	  

[Fri16]	  

Number	  of	  robots	  



Gramma*cal	  Evolu*on	  to	  increase	  CPFA	  flexibility	  
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Following	  GESwarm*,	  foraging	  strategies	  are	  rule	  sets	  in	  Extended	  Backus	  Naur	  form	  with	  
precondi*ons,	  behaviors	  &	  ac*ons.	  
A	  genotype	  is	  a	  string	  represen*ng	  a	  set	  of	  rules;	  GA	  performs	  muta*on	  &	  cross-‐over.	  
Rules	  are	  instan*ated	  and	  run	  in	  an	  environment	  to	  evaluate	  fitness	  (targets	  collected)	  

*[Fer15]	  

precondi*ons	  
behaviors	  	  
ac*ons	  

	  	  
	  

If	  not-‐holding	  food	  &	  not-‐on-‐food	  
	  	  	  	   	  Random	  walk	  
If	  on-‐food	  &	  not-‐holding-‐food	  
	  	  	  	  	   	  Pick-‐up-‐hold-‐food	  
If	  holding-‐food	  

	  Return-‐to-‐nest	  



•  Increased	  flexibility	  
•  Phylogene*c	  rela*onships	  among	  successful	  

strategies	  
•  constraints	  of	  evolu*onary	  history?	  

•  Generate	  new	  strategies:	  
•  Add	  behavioral	  primi*ves	  
•  Increasing	  environmental	  or	  task	  complexity	  

Gramma*cal	  Evolu*on	  to	  increase	  CPFA	  flexibility	  



Complexity	  Emerges	  from	  Simple	  Algorithms	  	  
in	  Complex	  Environments	  

T	  cells	  interact	  with	  
• Targets	  
– Dendri*c	  Cells	  in	  LN	  
– Infected	  cells	  in	  lung	  

• Chemical	  Cues	  
– Chemokines	  
– Inflamma*on	  

• Structural	  Features	  
– FRCs	  in	  LN	  
– Vasculature	  in	  lung	  

• Each	  other	  (?)	  



Flexibility	  in	  Mul*ple	  Environments	  
T	  cells	  in	  Lung	  vs.	  Lymph	  Nodes	  

	  How	  do	  T	  cells	  balance	  
	  search	  thoroughness	  vs	  extent?	  

What	  changes	  to	  produce	  different	  
behaviors	  in	  different	  environments?	  





[Fri16]	  

T	  Cell	  movement	  neither	  Levy	  nor	  Brownian	  Lung	  &	  LN	  
Correlated	  Random	  Walk	  with	  lognormal	  step	  sizes	  	  

	  



Extensive	  	  

Thorough	  

	  
T	  Cell	  search	  balances	  	  

unique	  &	  total	  contacts	  with	  targets	  
	  

[Fri16]	  
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T	  cells	  that	  visit	  hotspots	  search	  more	  thoroughly	  than	  other	  T	  cells	  
Hypothesis:	  T	  cells	  alter	  movement	  in	  response	  to	  environmental	  cues	  

	  
T	  cells	  visit	  “hotspots”	  in	  LN	  more	  frequently	  than	  

expected	  by	  chance	  	  

[Fri15,Fri16]	  



	  

T	  cells	  use	  mixed	  movement	  paTerns	  in	  the	  lung	  

15	  min	  segments	  



Complexity	  Emerges	  from	  Simple	  Algorithms	  	  
in	  Complex	  Environments	  

T	  cells	  interact	  with	  
•  Targets	  
– Dendri*c	  Cells	  in	  LN	  
– Infected	  cells	  in	  lung	  

• Chemical	  Cues	  
– Chemokines	  
– Inflamma*on	  

•  Structural	  Features	  
– FRCs	  in	  LN	  
– Vasculature	  in	  lung	  
– hotspots	  	  

• Other	  immune	  cells	  

Ants	  interact	  with	  
•  Targets	  
– seeds	  
– ephemeral	  food,	  prey	  

• Chemical	  Cues	  
– Pheromones	  	  
– alarm	  signals	  	  

•  Structural	  Features	  
– Habitat	  

•  Each	  other	  
– signaling	  
– contact	  rate	  sensing	  
– figh*ng	  



Complexity	  Emerges	  from	  Simple	  Algorithms	  	  
in	  Complex	  Environments	  

•  Simple	  behaviors	  
–  movement	  paTerns	  balances	  thoroughness/extent	  
–  sense	  signals	  &	  density/contact	  rates	  
–  recruitment	  &	  communica*on	  
–  memory	  

•  Environment	  influences	  behavior	  

•  Evolu*onary	  process	  evaluates	  behaviors	  in	  environments–	  
behavior	  exists	  in	  interac*on	  between	  agents	  and	  environment	  

•  Robot	  swarms	  embed	  algorithms	  in	  the	  real	  world,	  requiring	  an	  
ecological	  perspec*ve	  

	  
•  Open	  ques*ons:	  

–  What	  behavioral	  primi*ves	  to	  use?	  
–  What	  process	  for	  turning	  rules	  into	  strategies?	  GEswarm?	  
–  What	  features	  of	  rules	  generate	  flexibility?	  
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Swarm	  robots	  for	  ISRU:	  	  
In	  Situ	  Resource	  U*liza*on	  or	  
foraging	  for	  resources	  on	  Mars	  

	  

www.NasaSwarmathon.com	  
youtu.be/-‐LKc7jll7IM	  

github.com/BCLab-‐UNM	  
cs.unm.edu/~melaniem	  

	  

A	  challenge	  to	  engage	  students	  
to	  develop	  collec*ve	  robots	  to	  	  

to	  revolu*onize	  space	  explora*on	  

•  24	  teams	  from	  MSIs	  
•  475	  undergraduates,	  hundreds	  of	  HS	  students	  
•  60	  Robots	  
•  Compe**on	  April	  2016	  at	  NASA	  KSC	  
•  Virtual	  compe**on	  in	  Gazeebo	  
•  40	  teams	  from	  MSIs	  in	  2017	  


