Complex Collective Behaviors Emerge

$$
\begin{aligned}
& \text { from Simple Algorithms } \\
& \text { in T cells, Ants \& Robot Swarms }
\end{aligned}
$$

Melanie E. Moses
Associate Professor of Computer Science \& Biology
University of New Mexico
External Faculty, Santa Fe Institute

Decentralized Collective Search Strategies

http://www.wed-lock.co.za/wp-content/uploads/2013/02/3D-Render-of the-human-immune-system.jpeg

http://entnemdept.ufl.edu/creatures/urban/ants/
harvester_ant03.jpg

How do effective search strategies emerge from interactions among agents and between agents and their environment?

Why Flexibility?

https://www.ted.com/talks/chris_urmson_how_a_driverless_car_sees_the_road?language=en

Why Swarms?

Why Swarms?

Flexible in multiple environments Robust to individual failure and error Scalable to large swarm sizes

Simple Rules govern interactions among agents \& with environment Efficient \& Effective for spatially distributed tasks
Ants: most ecologically successful foragers on earth

Focus on Collective Foraging

- Search problems are ubiquitous in biology and computer science
- Search for targets distributed in space
- Distributed algorithms on dispersed agents increases search efficiency
- Efficiency of search depends on target distribution
- Requires environmental interaction
- May require retrieval and collection to a central location
- Collective Search in robotics
- Applications: search \& rescue, waste clean up, exploration, monitoring
- noise, stochasticity, error
- balance spatial extent vs thoroughness
- explore vs exploit tradeoff

Flexibility in Multiple Environments T cells in Lymph Nodes vs Lung

Search for Dendritic Cells in Lymph Node

Search for Infection in Lung

Flexibility in Multiple Environments 14,000 ant species in diverse habitats

Flexibility in Multiple Environments Robots collect from different target distributions

Complexity Emerges from Simple Algorithms in Complex Environments

Ants interact with

- Targets -seeds
- Chemical Cues
-Pheromones
- Structural Features
-habitat
- Each other
-signaling
-contact rate sensing
-fighting

Complexity Emerges from Simple Algorithms in Complex Environments

Ants interact with

- Targets -seeds
- Chemical Cues
-Pheromones
- Structural Features
-habitat
- Each other

-signaling
-contact rate sensing
-fighting

Complexity Emerges from Simple Algorithms in Complex Environments

Ants interact with

- Targets -seeds
- Chemical Cues
-Pheromones
- Structural Features
-habitat
- Each other
-signaling
-contact rate sensing
-fighting

Complexity Emerges from Simple Algorithms in Complex Environments

Ants interact with

- Targets -seeds
- Chemical Cues
-Pheromones
- Structural Features
-habitat
- Each other
-signaling
-contact rate sensing
-fighting

Scalable, Flexible, Robust Foraging from a simple repertoire of behaviors

Count
Assess seed pile density

Remember \& Return
Site Fidelity

Movement
Balances search thoroughness vs extent

Communicate Pheromones

Central Place Foraging Model

Foraging success depends on Interactions among behaviors \& environment

Lay pheromone Whenever I find a seed

Lay pheromone Only if count > 5

Appropriate communication depends on what is sensed in the environment

Foraging success depends on interactions among behaviors \& environment

Movement balances the extensiveness and thoroughness of search

Informed Walk

After returning via site fidelity or following a pheromone trail Turn often to search thoroughly

Appropriate movement depends on what has been communicated \& remembered

Central Place Foraging Algorithm (CPFA)


```
Algorithm 1 Central-Place Foraging Algorithm
    Disperse from nest to random location
    while experiment running do
        Conduct uninformed correlated random walk
        if resource found then
            Collect resource
            Count number of resources \(c\) near current location \(l_{f}\)
            Return to nest with resource
            if \(\operatorname{PoIS}\left(c, \lambda_{l p}\right)>U(0,1)\) then
                Lay pheromone to \(l_{f}\)
            end if
            if \(\operatorname{Pois}\left(c, \lambda_{s f}\right)>U(0,1)\) then
                    Return to \(l_{f}\)
                    Conduct informed correlated random walk
            else if pheromone found then
                    Travel to pheromone location \(l_{p}\)
                    Conduct informed correlated random walk
            else
                    Choose new random location
            end if
        end if
    end while
```

GA tunes CPFA parameters to specific environments:
Behavioral strategies are evolved from a repertoire of behavioral primitives

GA-evolved CPFA

7 CPFA parameters (real-valued, interact)

Parameter	Description	Initialization Function
p_{s}	Probability of switching to searching	$\mathcal{U}(0,1)$
p_{r}	Probability of returning to nest	$\mathcal{U}(0,1)$
ω	Uninformed search variation	$\mathcal{U}(0,4 \pi)$
$\lambda_{i d}$	Rate of informed search decay	
$\lambda_{s f}$	Rate of site fidelity	$\exp (5)$
$\lambda_{l p}$	Rate of laying pheromone	$\mathcal{U}(0,20)$
$\lambda_{p d}$	Rate of pheromone decay	$\mathcal{U}(0,20)$

- Uninformed robots use a Correlated Random Walk: $\theta_{t}=\mathcal{N}\left(\theta_{t-1}, \omega\right)$
- Informed robots use a less correlated CRW: $\sigma=\omega+(4 \pi-\omega) e^{-\lambda_{\mathrm{id}} t}$
- Information decisions governed by a Poisson CDF: $\quad \operatorname{PoIS}(c, \lambda)=e^{-\lambda} \sum_{i=0}^{\lfloor c\rfloor} \frac{\lambda^{i}}{i!} \quad$ Robots return to location of discovered resource if the count of nearby resources c is large
- Robots can use memory (site fidelity, $\lambda=\lambda_{s f}$) or communication (pheromone-like waypoints, $\lambda=\lambda_{l p}$)
- Pheromone waypoints decay exponentially over time: $\gamma=e^{-\lambda_{p d} t}$

GA selects parameters to maximize seeds collected in fixed time

Each model run requires a set of input parameters $\left[p_{t}, p_{s}, \omega, \lambda_{i d \gamma} \lambda_{l p} \lambda_{s f} \lambda_{f p}\right]$ Each individual in a colony is identical

Cross over and mutation on parameters

$$
\begin{aligned}
& \mathrm{GO}:\left[p_{t}, p_{s,} \omega, \lambda_{i d} \lambda_{l p} \lambda_{s f}, \lambda_{f p}\right] \times\left[p_{t}, p_{s,} \omega, \lambda_{i d,} \lambda_{l p} \lambda_{s f}, \lambda_{f p}\right] \\
& \mathrm{G} 1: \quad\left[p_{t}, p_{s,} \omega, \lambda_{i \phi^{\prime}} \lambda_{l p,}, \lambda_{s f}, \lambda_{f p}\right]
\end{aligned}
$$

100 runs with different parameter sets (colonies) for 100 Generations
Each colony, each generation, evaluated on 8 different target placements for 1 simulated hour

Colonies with highest 'fitness' (seeds collected) replicate into next generation

Group Selection Experiments in silico evolve colonies to maximize foraging rate

Complexity Emerges from Simple Algorithms in Complex Environments

Robots interact with

- Targets
- April Tags
- Virtual Pheromones
- wifi waypoints
- Structural Features
- Tag distribution
- Each other
- obstacle avoidance
- contact rate sensing
- Explore with correlated random walk
- Estimate number of resources by rotating 360°
- Return via memory or communication
- Search thoroughly; gradually give up
- Parameters governing movement, memory \& communication tuned in silico by GA

Complexity Emerges from Simple Algorithms in Complex Environments

Robots interact with

- Targets
- April Tags
- Virtual Pheromones
- error-prone waypoints over wifi or BT
- Structural Features
- Tag distribution
- Each other
- obstacle avoidance
- contact rate sensing

Experimental Setup

Simulated foraging:

- 1 (simulated) hour
- 1 to 768 robots per swarm
- 125×125 grid (1323×1323)
- 256 resources $(28,672)$
- Error model emulates sensor noise:
- 50\% detection error
- $50-100 \mathrm{~cm}$ positional error
- Constitutes fitness function for GA

Physical foraging:

- 1 hour
- 1,3, and 6 robots per swarm
- $100 \mathrm{~m}^{2}$ arena
- 256 QR barcode tags
- WiFi communication
- Simulated retrieval via unique tag
- Evolved behaviors transferred from simulated to physical robots

Clustered

Powerlaw-distributed

Random

iAnts adapt to their environment

Behaviors evolve that increase foraging rate in each environment

iAnts adapt to their environment

Behaviors evolve that increase foraging rate in each environment

Flexibility: different behaviors for different target distributions

- Cluster-adapted swarms use less site fidelity (memory) and more pheromone (communication) than power-law-adapted swarms
- Random-adapted swarms rarely use either memory or communication

Flexible response to error

Tag detection error: ~50\%
Localization error up to 50 cm

Error causes robots in clustered world to lay more pheromone that evaporates slowly

For partially clustered targets, the opposite

For random targets, irrelevant

Communication improves foraging given clustered targets

single large pile

Communication improves foraging given clustered targets

Adapting movement to sensed resource density improves search given small clusters

Value of Communication depends on information in the environment

- For a single cluster
- pheromones: 8 times better than random search
- site fidelity: 4 times better than random search
- Value of information declines exponentially with the log of the number of resources
- For many small clusters

- adaptive site fidelity is 4 times better than random
- For randomly distributed resources
- information is useless

Analytical Model of Random Foraging

Diameter of a Pile

$$
d=2 \sqrt{\frac{f a}{m \pi}}
$$

Angle of a Pile

$$
\theta=2 \sin ^{-1}\left(\frac{3 d}{4 R}\right)
$$

Probability of Hitting At Least One Pile

$$
p=1-\left(\frac{2 \pi-\theta}{2 \pi}\right)^{m}
$$

Expected Foraging Rate of n Ants

$$
n \cdot \frac{d f}{d t}=\frac{3 n s p}{2 R(3-p)}
$$

Analytical Model of Nest Recruitment

Optimal Scout Population (x)

$$
\frac{2 k}{n-x}=\frac{2+q^{x}}{1-q^{x}}
$$

Value of a Discovery:
Amount Able to be Collected
$k=\min \left(f / m-1, \frac{(v-1)(n-x)}{2}\right)$

Expected Foraging Rate of n Ants
$n \cdot \frac{d f}{d t}=\frac{3 s[(n-x)(3-p)+2 x p]}{4 R(3-p)}$

Value of nest recruitment

$$
\frac{[(n-x)(3-p)+2 x p]}{2 n p}
$$

- Assumptions eliminate interesting environmental features
- Results are sensitive to
- optimal scout number
- timing
- Identifies a decrease in foraging rate for recruitment given many small piles-where adaptive sf is most useful

CPFA Extensions

Navigating Obstacles

[Sto16]

Comparison to Deterministic Search

Surprisingly efficient, error-tolerant, but not scalable
[Fri16]

Grammatical Evolution to increase CPFA flexibility

$$
\begin{aligned}
\mathcal{R} & =\left\{R_{i}\right\}, i \in\left\{1, \ldots, n_{R}\right\} \\
R_{i} & =\mathcal{P}_{i} \times \mathcal{B}_{i} \times \mathcal{A}_{i},
\end{aligned}
$$

preconditions
behaviors actions

> If not-holding food \& not-on-food Random walk
> If on-food \& not-holding-food Pick-up-hold-food
> If holding-food
> Return-to-nest

Following GESwarm*, foraging strategies are rule sets in Extended Backus Naur form with preconditions, behaviors \& actions.
A genotype is a string representing a set of rules; GA performs mutation \& cross-over. Rules are instantiated and run in an environment to evaluate fitness (targets collected)

Grammatical Evolution to increase CPFA flexibility

- Increased flexibility
- Phylogenetic relationships among successful strategies
- constraints of evolutionary history?
- Generate new strategies:
- Add behavioral primitives
- Increasing environmental or task complexity

Complexity Emerges from Simple Algorithms in Complex Environments

T cells interact with

- Targets
-Dendritic Cells in LN
- Infected cells in lung
- Chemical Cues
-Chemokines
-Inflammation
- Structural Features
-FRCs in LN
- Vasculature in lung

- Each other (?)

Flexibility in Multiple Environments T cells in Lung vs. Lymph Nodes

> How do T cells balance search thoroughness vs extent?

Mrass et al., Movie S3
Two-photon imaging:
Movie projection and track animation

Three-dimensional track animation

T Cell movement neither Levy nor Brownian Lung \& LN Correlated Random Walk with lognormal step sizes

T Cell search balances unique \& total contacts with targets

B

Extensive

D

T cells visit "hotspots" in LN more frequently than expected by chance

T cells that visit hotspots search more thoroughly than other T cells Hypothesis: T cells alter movement in response to environmental cues

T cells use mixed movement patterns in the lung

Representative track

Behavior of 2 hour tracks

Behavior of
2 hour tracks

15 min segments

Complexity Emerges from Simple Algorithms in Complex Environments

T cells interact with

- Targets
- Dendritic Cells in LN
- Infected cells in lung
- Chemical Cues
- Chemokines
- Inflammation
- Structural Features
- FRCs in LN
- Vasculature in lung
- hotspots
- Other immune cells

Ants interact with

- Targets
- seeds
- ephemeral food, prey
- Chemical Cues
- Pheromones
- alarm signals
- Structural Features
- Habitat
- Each other
- signaling
- contact rate sensing
- fighting

Complexity Emerges from Simple Algorithms in Complex Environments

- Simple behaviors
- movement patterns balances thoroughness/extent
- sense signals \& density/contact rates
- recruitment \& communication
- memory
- Environment influences behavior
- Evolutionary process evaluates behaviors in environmentsbehavior exists in interaction between agents and environment
- Robot swarms embed algorithms in the real world, requiring an ecological perspective
- Open questions:
- What behavioral primitives to use?
- What process for turning rules into strategies? GEswarm?
- What features of rules generate flexibility?

Linh Tran

Dr. Paulus Mrass

Matthew Fricke
Dr. Drew Levin

Prof. Stephanie Forrest

Qi Lu

Dr. Tatiana Paz Flanagan

Dr. Kenneth Letendre

Daniel Washington

Dr. Joshua Hecker

Karl Stollies

James S. McDonnell Foundation

- 24 teams from MSIs
- 475 undergraduates, hundreds of HS students
- 60 Robots
- Competition April 2016 at NASA KSC
- Virtual competition in Gazeebo
- 40 teams from MSIs in 2017

A challenge to engage students to develop collective robots to to revolutionize space exploration

Swarm robots for ISRU: In Situ Resource Utilization or foraging for resources on Mars
www.NasaSwarmathon.com youtu.be/-LKc7jll7IM github.com/BCLab-UNM cs.unm.edu/~melaniem

