What kinds of algorithms would it take for a neuroscientist to understand a microprocessor? with Eric Jonas

BioRXiv: Could a neuroscientist understand a microprocessor?

Error messages are useful

Epistemological problem			\times
Your model does not describe reality.			
ignore	blame student	publish (nature)	

Reverse engineer a big biological distributed algorithm

MOS 6502

Courtesy http://visual6502.org

How it actually works

Multi scale

1-bit Adder

AND gate Vdd Vdd в**--d** A-d Out Α-B-

Vss

AND gate (silicon)

logic gate primitives

3 Behaviors

a. Donkey Kong (DK)

b. Space Invaders (SI)

c. Pitfall (PF)

Lesion studies

Lesions which impact single behavior

How to make it work

- Problem: Complex game instead of targeted instructions
- Same as for brain
- But could work if one activated/inactivated
- And optimized stimulation so that effects are sparse

"Spike data"

Tuning curves

luminance

How to make it work

- Problem: not having understanding of "instructions"
- Same as for brain
- Run lots of programs. Relate instructions to activities.

Strong global correlations

LFPs and power law spectra

Granger causality

a. Donkey Kong

b. Space Invaders

c. Pitfall

How to make these work?

• No idea!

Whole chip

time

Nonnegative matrix factorization finds something

0.15

0.20

0.25

0.10

time (ms)

0.00

0.05

How to make these work?

- Need far more different states to be meaningful
- Far more data
- Nonlinear dimensionality reduction

Souped up Stochastic block model finds some network structure

Transistor distance

How to make it work

- Problem: The network is far more complicated
- Same for the brain
- Solutions hierarchical structure inference
 - MCMC is too slow, clustering too unspecific, needs something in between
 - Big systems

Kasthuri and Lichtman

with Kasthuri, Xiao, Jacobsen

cubic mm

Conclusion

- We know little about how the brain works
- Data by itself won't solve the problem
- Need to ask the fundamental questions
- Countless big computational problems