What kinds of algorithms would it take for a neuroscientist to understand a microprocessor?

 with Eric Jonas
Error messages are useful

Your model does not describe reality.
ignore
blame student

Reverse engineer a big biological distributed algorithm

MOS 6502

6502AD
 4585 S

Courtesy http://visual6502.org

How it actually works

Main Memory

Multi scale

logic gate primitives

AND gate

I/V for single gate

AND gate (silicon)

3 Behaviors

a. Donkey Kong (DK)

b. Space Invaders (SI)

c. Pitfall (PF)

Lesion studies

How to make it work

- Problem: Complex game instead of targeted instructions
- Same as for brain
- But could work if one activated/inactivated
- And optimized stimulation so that effects are sparse

"Spike data"

Tuning curves

How to make it work

- Problem: not having understanding of "instructions"
- Same as for brain
- Run lots of programs. Relate instructions to activities.

Strong global correlations

LFPs and power law spectra

Granger causality

a. Donkey Kong

b. Space Invaders

c. Pitfall

How to make these work?

- No idea!

Whole chip

Nonnegative matrix
 factorization finds something

How to make these work?

- Need far more different states to be meaningful
- Far more data
- Nonlinear dimensionality reduction

Souped up Stochastic block model finds some network structure

How to make it work

- Problem: The network is far more complicated
- Same for the brain
- Solutions hierarchical structure inference
- MCMC is too slow, clustering too unspecific, needs something in between
- Big systems

Kasthuri and Lichtman

cubic mm

with Kasthuri, Xiao, Jacobsen

Conclusion

- We know little about how the brain works
- Data by itself won't solve the problem
- Need to ask the fundamental questions
- Countless big computational problems

