When Neurons Fail

El Mahdi El Mhamdi, Rachid Guerraoui

BDA, Chicago July 25th, 2016

Motivations

Table of Contents

2 Problem statement

Motivations

Universality

NNs everywhere

Motivations Ur

Universality

Model

Figure : Feed forward neural network

Nodes: neurons Links: synapses

Motivations

Universality

Model

$$F_{neu}(\mathbf{X}) = \sum_{i=1}^{N_L} w_i^{(L+1)} y_i^{(L)}$$

with $y_j^{(l)} = \varphi(s_j^{(l)})$ for $1 \le l \le L$; $y_j^{(0)} = x_j$ and $s_j^{(l)} = \sum_{i=1}^{N_{l-1}} w_{ji}^{(l)} y_i^{(l-1)}$

Motivations Software simulated NN

Scalability

Hardware-based NNs

Motivations

Scalability

SyNAPSE (DARPA, IBM), Human Brain Project (SP9 on neuromorphic), Brains in Silicon at Stanford...

How robust is this?

Motivations Fault tolerance

Crash failure: a component stops working.

How robust is this?

Motivations Fault tolerance

Byzantine failure: a component sends arbitrary values.

Motivations Fault tolerance Biological plausibility

Examples of extreme robustness in nature

A man who lives without 90% of his brain is challenging our concept of 'consciousness'

The father of two lives a normal life.

1

¹Feuillet et al., 2007. Brain of a white-collar worker. Lancet (London, England), 370(9583), p.262.

Motivations Experimental observations Classical training leads to non-robust NN

E: difference between desired and actual outputs on a training set

$$\Delta w_{ij}^{(l)} = -rac{dE}{dw_{ij}^{(l)}}$$

 \exists robust weight distribution \mapsto Reach them with learning !

Randomly switch neurons off during the training phase Kerlirzin and Vallet (1991, 1993), Hinton et al. (2012, 2014)

Minimize $E_{av} = \sum_{D} E^{D} P(D)$ where $P(D) = (1-p)^{|D|} p^{(N-|D|)}$

Motivations Lack of theory Experimentally observed robustness

generalisation rate

- Over-provisionning
- Upper-bound ?

²from Kerlirzin 1993, edited

Problem statement Table of Contents

Given a precision ϵ , derive a tight bound on failures to keep ϵ -precision for a any neural network³ approximating a function F

³note: learning is taken for granted

Problem statement Theoretical background: universality

- Minimal networks are not robust ⁵
- Given over-provision ϵ' ($\epsilon' < \epsilon$), what condition on failures to preserve ϵ -precision?

⁵not to mention: impossible to derive

Results

Table of Contents

2 Problem statement

$$f \leq \frac{\epsilon - \epsilon'}{w_m}$$

- $\bullet~\mbox{More}$ over-provision $\mapsto \mbox{more}$ robustness
- \bullet Unequal weight distribution \mapsto single point of failure
- No Byzantine $FT \mapsto$ bounded synaptic capacity

Results General case Multilayer networks, Byzantine failures

- Failure at layer *I* propagates though layers I' > I (Byz and crash).
- \bullet Factors: weights, |layers|, |neurons|, Lipschitz coef. of φ
- \bullet Total error propagated to the output should be $\leq \epsilon \epsilon'$

Results General case Multilayer networks, Byzantine failures

• Bounded channel capacity (otherwise no robustness to Byzantine)

• Propagated error
$$\leq C \sum_{l=1}^{L} \left(f_l \mathcal{K}^{L-l} w_m^{(L+1)} \prod_{l'=l+1}^{L} (N_{l'} - f_{l'}) w_m^{(l')} \right)$$

C: capacity, K: Lipschitz coeff., $w_m^{(l)}$ maximal weight to layer l N_l : |neurons|, f_l : |failures|

ResultsGeneral caseHow to read the formula

$$C\sum_{l=1}^{L} \left(f_l \mathcal{K}^{L-l} w_m^{(L+1)} \prod_{l'=l+1}^{L} (N_{l'} - f_{l'}) w_m^{(l')}\right) \leq \epsilon - \epsilon'$$

ResultsGeneral caseHow to read the formula

$$C\sum_{l=1}^{L} \left(f_{l} K^{L-l} w_{m}^{(L+1)} \prod_{l'=l+1}^{L} (N_{l'} - f_{l'}) w_{m}^{(l')} \right) \leq \epsilon - \epsilon'$$

worst-case propagated error

ResultsGeneral caseHow to read the formula

$$C\sum_{l=1}^{L} \left(f_{l} K^{L-l} w_{m}^{(L+1)} \prod_{l'=l+1}^{L} (N_{l'} - f_{l'}) w_{m}^{(l')} \right) \leq \epsilon - \epsilon'$$

error margin permitted by the over-provision

How to read the formula

$$C\sum_{l=1}^{L} \left(f_{l} K^{L-l} w_{m}^{(L+1)} \prod_{l'=l+1}^{L} (N_{l'} - f_{l'}) w_{m}^{(l')} \right) \leq \epsilon - \epsilon'$$

General case

Error (at most C is transmitted) at f_l neurons in layer l propagating through l' > l.

Results

 $(N_{l'} - f_{l'})$: only correct neurons propagating it, multiplying by $Kw_m^{(l')}$.

Results General case Unbounded capacity

Taking $\mathcal{C} \mapsto \infty$

$$C\sum_{l=1}^{L} \left(f_{l} K^{L-l} w_{m}^{(L+1)} \prod_{l'=l+1}^{L} (N_{l'} - f_{l'}) w_{m}^{(l')} \right) \leq \epsilon - \epsilon'$$

Then $\forall I f_I = 0$ No Byzantine FT.

Results Applications

- Generalization to synaptic failures.
- Applications of the bound (Memory cost, neuron duplication, synchrony)
- Other neural computing models.

More details: https://infoscience.epfl.ch/record/217561