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Neural network models of early sensory processing typically reduce the
dimensionality of streaming input data. Such networks learn the princi-
pal subspace, in the sense of principal component analysis, by adjusting
synaptic weights according to activity-dependent learning rules. When
derived from a principled cost function, these rules are nonlocal and
hence biologically implausible. At the same time, biologically plausible
local rules have been postulated rather than derived from a principled
cost function. Here, to bridge this gap, we derive a biologically plausible
network for subspace learning on streaming data by minimizing a prin-
cipled cost function. In a departure from previous work, where cost was
quantified by the representation, or reconstruction, error, we adopt a mul-
tidimensional scaling cost function for streaming data. The resulting al-
gorithm relies only on biologically plausible Hebbian and anti-Hebbian
local learning rules. In a stochastic setting, synaptic weights converge
to a stationary state, which projects the input data onto the principal
subspace. If the data are generated by a nonstationary distribution, the
network can track the principal subspace. Thus, our result makes a step
toward an algorithmic theory of neural computation.

1 Introduction

Early sensory processing reduces the dimensionality of streamed inputs
(Hyvärinen, Hurri, & Hoyer, 2009), as evidenced by a high ratio of input
to output nerve fiber counts (Shepherd, 2003). For example, in the human
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Figure 1: An Oja neuron and our neural network. (A) A single Oja neuron
computes the principal component, y, of the input data, x, if its synaptic weights
follow Hebbian updates. (B) A multineuron network computes the principal
subspace of the input if the feedforward connection weight updates follow a
Hebbian and the lateral connection weight updates follow an anti-Hebbian rule.

retina, information gathered by approximately 125 million photoreceptors
is conveyed to the lateral geniculate nucleus through 1 million or so gan-
glion cells (Hubel, 1995). By learning a lower-dimensional subspace and
projecting the streamed data onto that subspace, the nervous system de-
noises and compresses the data simplifying further processing. Therefore,
a biologically plausible implementation of dimensionality reduction may
offer a model of early sensory processing.

For a single neuron, a biologically plausible implementation of dimen-
sionality reduction in the streaming, or online, setting has been proposed
in the seminal work of Oja (1982; see Figure 1A). At each time point, t, an
input vector, xt , is presented to the neuron, and, in response, it computes a
scalar output, yt = wxt , where w is a row-vector of input synaptic weights.
Furthermore, synaptic weights w are updated according to a version of
Hebbian learning called Oja’s rule,

w ← w + ηyt(x
�
t − wyt ), (1.1)

where η is a learning rate and � designates a transpose. Then the neuron’s
synaptic weight vector converges to the principal eigenvector of the covari-
ance matrix of the streamed data (Oja, 1982). Importantly, Oja’s learning
rule is local, meaning that synaptic weight updates depend on the activi-
ties of only pre- and postsynaptic neurons accessible to each synapse and
therefore biologically plausible.

Oja’s rule can be derived by an approximate gradient descent of the
mean squared representation error (Cichocki & Amari, 2002; Yang, 1995), a
so-called synthesis view of principal component analysis (PCA) (Pearson,
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1901; Preisendorfer & Mobley, 1988):

min
w

∑
t

‖xt − w�wxt‖2
2. (1.2)

Computing principal components beyond the first requires more than
one output neuron and motivated numerous neural networks. Some well-
known examples are the generalized Hebbian algorithm (GHA) (Sanger,
1989), Földiak’s network (Földiak, 1989), the subspace network (Karhunen
& Oja, 1982), Rubner’s network (Rubner & Tavan, 1989; Rubner & Schulten,
1990), Leen’s minimal coupling and full coupling networks (Leen, 1990,
1991), and the APEX network (Kung & Diamantaras, 1990; Kung, Diaman-
taras, & Taur, 1994). We refer to Becker and Plumbley (1996), Diamantaras
and Kung (1996), and Diamantaras (2002) for a detailed review of these and
further developments.

However, none of the previous contributions was able to derive a multi-
neuronal single-layer network with local learning rules by minimizing a
principled cost function, in a way that Oja’s rule, equation 1.1, was de-
rived for a single neuron. The GHA and the subspace rules rely on nonlocal
learning rules: feedforward synaptic updates depend on other neurons’
synaptic weights and activities. Leen’s minimal network is also nonlocal:
feedforward synaptic updates of a neuron depend on its lateral synaptic
weights. While Földiak’s, Rubner’s, and Leen’s full coupling networks use
local Hebbian and anti-Hebbian rules, they were postulated rather than
derived from a principled cost function. APEX network perhaps comes
closest to our criterion: the rule for each neuron can be related separately to
a cost function that includes contributions from other neurons. But no cost
function describes all the neurons combined.

At the same time, numerous dimensionality-reduction algorithms have
been developed for data analysis needs, disregarding the biological plausi-
bility requirement. Perhaps the most common approach is again principal
component analysis (PCA), which was originally developed for batch pro-
cessing (Pearson, 1901) but later adapted to streaming data (Yang, 1995;
Crammer, 2006; Arora, Cotter, Livescu, & Srebro, 2012; Goes, Zhang, Arora,
& Lerman, 2014). (For a more detailed collection of references, see, e.g.,
Balzano, 2012.) These algorithms typically minimize the representation er-
ror cost function:

min
F

‖X − F�FX‖2
F, (1.3)

where X is a data matrix and F is a wide matrix (for detailed notation, see
below). The minimum of equation 1.3 is when rows of F are orthonormal
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and span the m-dimensional principal subspace, and therefore F�F is the
projection matrix to the subspace (Yang, 1995).1

A gradient descent minimization of such cost function can be approx-
imately implemented by the subspace network (Yang, 1995), which, as
pointed out above, requires nonlocal learning rules. While this algorithm
can be implemented in a neural network using local learning rules, it re-
quires a second layer of neurons (Oja, 1992), making it less appealing.

In this letter, we derive a single-layer network with local Hebbian and
anti-Hebbian learning rules, similar in architecture to Földiak’s (1989) (see
Figure 1B), from a principled cost function and demonstrate that it recov-
ers a principal subspace from streaming data. The novelty of our approach
is that rather than starting with the representation error cost function tra-
ditionally used for dimensionality reduction, such as PCA, we use the
cost function of classical multidimensional scaling (CMDS), a member of
the family of multidimensional scaling (MDS) methods (Cox & Cox, 2000;
Mardia, Kent, & Bibby, 1980). Whereas the connection between CMDS and
PCA has been pointed out previously (Williams, 2001; Cox & Cox, 2000;
Mardia et al., 1980), CMDS is typically performed in the batch setting. In-
stead, we developed a neural network implementation of CMDS for stream-
ing data.

The rest of the letter is organized as follows. In section 2, by minimizing
the CMDS cost function, we derive two online algorithms implementable
by a single-layer network, with synchronous and asynchronous synaptic
weight updates. In section 3, we demonstrate analytically that synaptic
weights define a principal subspace whose dimension m is determined by
the number of output neurons and that the stability of the solution requires
that this subspace corresponds to top m principal components. In section 4,
we show numerically that our algorithm recovers the principal subspace of
a synthetic data set and does it faster than the existing algorithms. Finally,
in section 5, we consider the case when data are generated by a nonstation-
ary distribution and present a generalization of our algorithm to principal
subspace tracking.

2 Derivation of Online Algorithms from the CMDS Cost Function

CMDS represents high-dimensional input data in a lower-dimensional out-
put space while preserving pairwise similarities between samples (Young
& Householder, 1938; Torgerson, 1952).2 Let T centered input data sam-
ples in R

n be represented by column vectors xt=1,...,T concatenated into an

1Recall that in general, the projection matrix to the row space of a matrix P is given by
P� (

PP�)−1 P, provided PP� is full rank (Plumbley, 1995). If the rows of P are orthonormal,
this reduces to P�P.

2Whereas MDS in general starts with dissimilarities between samples that may not live
in Euclidean geometry, in CMDS, data are assumed to have a Euclidean representation.
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n × T matrix X = [x1, . . . , xT ]. The corresponding output representations
in R

m, m ≤ n, are column vectors, yt=1,...,T , concatenated into an m × T-
dimensional matrix Y = [y1, . . . , yT ]. Similarities between vectors in Eu-
clidean spaces are captured by their inner products. For the input (output)
data, such inner products are assembled into a T × T Gram matrix X�X
(Y�Y).3 For a given X, CMDS finds Y by minimizing the so-called strain
cost function (Carroll & Chang, 1972):

min
Y

‖X�X − Y�Y‖2
F . (2.1)

For discovering a low-dimensional subspace, the CMDS cost function,
equation 2.1, is a viable alternative to the representation error cost function,
equation 1.3, because its solution is related to PCA (Williams, 2001; Cox
& Cox, 2000; Mardia et al., 1980). Specifically, Y is the linear projection
of X onto the (principal sub-)space spanned by m principal eigenvectors
of the sample covariance matrix CT = 1

T

∑T
t=1 xtx

�
t = XX�. The CMDS cost

function defines a subspace rather than individual eigenvectors because
left orthogonal rotations of an optimal Y stay in the subspace and are also
optimal, as is evident from the symmetry of the cost function.

In order to reduce the dimensionality of streaming data, we minimize the
CMDS cost function, equation 2.1, in the stochastic online setting. At time
T, a data sample, xT , drawn independently from a zero-mean distribution
is presented to the algorithm, which computes a corresponding output, yT ,
prior to the presentation of the next data sample. Whereas in the batch
setting, each data sample affects all outputs, in the online setting, past
outputs cannot be altered. Thus, at time T, the algorithm minimizes the cost
depending on all inputs and ouputs up to time T with respect to yT while
keeping all the previous outputs fixed:

yT = arg min
yT

‖X�X − Y�Y‖2
F = arg min

yT

T∑
t=1

T∑
t′=1

(x�
t xt′ − y�

t yt′ )
2, (2.2)

where the last equality follows from the definition of the Frobenius norm.
By keeping only the terms that depend on current output yT , we get

yT = arg min
yT

[
− 4x�

T

(
T−1∑
t=1

xty
�
t

)
yT + 2y�

T

(
T−1∑
t=1

yty
�
t

)
yT

− 2
∥∥xT

∥∥2‖yT‖2 + ‖yT‖4

]
. (2.3)

3When input data are pairwise Euclidean distances, assembled into a matrix Q, the
Gram matrix, X�X, can be constructed from Q by HZH, where Zi j = −1/2Q2

i j , H = In −
(1/n)11� is the centering matrix, 1 is the vector of n unitary components, and In is the
n-dimensional identity matrix (Cox & Cox, 2000; Mardia et al., 1980).
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In the large-T limit, expression 2.3 simplifies further because the first two
terms grow linearly with T and therefore dominate over the last two. After
dropping the last two terms, we arrive at

yT = arg min
yT

[
−4x�

T

(
T−1∑
t=1

xty
�
t

)
yT + 2y�

T

(
T−1∑
t=1

yty
�
t

)
yT

]
. (2.4)

We term the cost in expression 2.4 the online CMDS cost. Because the on-
line CMDS cost is a positive semidefinite quadratic form in yT , this optimiza-
tion problem is convex. While it admits a closed-form analytical solution
via matrix inversion, we are interested in biologically plausible algorithms.
Next, we consider two algorithms that can be mapped onto single-layer
neural networks with local learning rules: coordinate descent leading to
asynchronous updates and Jacobi iteration leading to synchronous updates.

2.1 A Neural Network with Asynchronous Updates. The online CMDS
cost function, equation 2.4, can be minimized by coordinate descent, which
at every step finds the optimal value of one component of yT while keeping
the rest fixed. The components can be cycled through in any order until the
iteration converges to a fixed point. Such iteration is guaranteed to converge
under very mild assumptions: diagonals of

∑T−1
t=1 yty

�
t have to be positive

(Luo & Tseng, 1991), meaning that each output coordinate has produced
at least one nonzero output before current time step T. This condition is
almost always satisfied in practice.

The cost to be minimized at each coordinate descent step with respect to
the ith channel’s activity is

yT,i = arg min
yT,i

[
−4x�

T

(
T−1∑
t=1

xty
�
t

)
yT + 2y�

T

(
T−1∑
t=1

yty
�
t

)
yT

]
.

Keeping only those terms that depend on yT,i yields

yT,i = arg min
yT,i

[
−4

∑
k

xT,k

(
T−1∑
t=1

xt,kyt,i

)
yT,i

+ 4
∑
j �=i

yT, j

(
T−1∑
t=1

yt, jyt,i

)
yT,i + 2

(
T−1∑
t=1

y2
t,i

)
y2

T,i

⎤
⎦ .
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By taking a derivative with respect to yT,i and setting it to zero, we arrive
at the following closed-form solution:

yT,i =
∑

k

(∑T−1
t=1 yt,ixt,k

)
xT,k∑T−1

t=1 y2
t,i

−
∑

j �=i

(∑T−1
t=1 yt,iyt, j

)
yT, j∑T−1

t=1 y2
t,i

. (2.5)

To implement this algorithm in a neural network, we denote normalized
input-output and output-output covariances,

WT,ik =
∑T−1

t=1 yt,ixt,k∑T−1
t=1 y2

t,i

, MT,i, j �=i =
∑T−1

t=1 yt,iyt, j∑T−1
t=1 y2

t,i

, MT,ii = 0, (2.6)

allowing us to rewrite the solution, equation 2.5, in a form suggestive of a
linear neural network,

yT,i ←
n∑

j=1

WT,i jxT, j −
m∑

j=1

MT,i jyT, j, (2.7)

where WT and MT represent the synaptic weights of feedforward and lateral
connections respectively (see Figure 1B).

Finally, to formulate a fully online algorithm, we rewrite equation 2.6 in a
recursive form. This requires introducing a scalar variable DT,i representing
the cumulative squared activity of a neuron i up to time T − 1,

DT,i =
T−1∑
t=1

y2
t,i, (2.8)

Then at each time point, T, after the output yT is computed by the network,
the following updates are performed:

DT+1,i ← DT,i + y2
T,i,

WT+1,i j ←WT,i j + yT,i(xT, j − WT,i jyT,i)/DT+1,i,

MT+1,i, j �=i ← MT,i j + yT,i(yT, j − MT,i jyT,i)/DT+1,i. (2.9)

Equations 2.7 and 2.9 define a neural network algorithm that minimizes
the online CMDS cost function, equation 2.4, for streaming data by alternat-
ing between two phases: neural activity dynamics and synaptic updates.
After a data sample is presented at time T, in the neuronal activity phase,
neuron activities are updated one by one (i.e., asynchronously; see equation
2.7) until the dynamics converges to a fixed point defined by the following
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equation:

yT = WTxT − MTyT ⇒ yT = (Im + MT )−1WTxT , (2.10)

where Im is the m-dimensional identity matrix.
In the second phase of the algorithm, synaptic weights are updated,

according to a local Hebbian rule, equation 2.9, for feedforward connec-
tions and, according to a local anti-Hebbian rule (due to the minus sign in
equation 2.7), for lateral connections. Interestingly, these updates have the
same form as the single-neuron Oja’s rule, equation 1.1 (Oja, 1982), except
that the learning rate is not a free parameter but is determined by the cu-
mulative neuronal activity 1/DT+1,i.

4 To the best of our knowledge, such a
single-neuron rule (Hu, Towfic, Pehlevan, Genkin, & Chklovskii, 2013) has
not been derived in the multineuron case. An alternative derivation of this
algorithm is presented in section A.1 in the appendix.

Unlike the representation error cost function, equation 1.3, the CMDS
cost function, equation 2.1, is formulated only in terms of input and output
activity. Yet the minimization with respect to Y recovers feedforward and
lateral synaptic weights.

2.2 A Neural Network with Synchronous Updates. Here, we present
an alternative way to derive a neural network algorithm from the large-T
limit of the online CMDS cost function, equation 2.4. By taking a derivative
with respect to yT and setting it to zero, we arrive at the following linear
matrix equation:

(
T−1∑
t=1

yty
�
t

)
yT =

(
T−1∑
t=1

ytx
�
t

)
xT . (2.11)

We solve this system of equations using Jacobi iteration (Strang, 2009) by
first splitting the output covariance matrix that appears on the left side of
equation 2.11 into its diagonal component DT and the remainder RT ,

(
T−1∑
t=1

yty
�
t

)
= DT + RT ,

4The single-neuron Oja’s rule derived from the minimization of a least squares opti-
mization cost function ends up with the identical learning rate (Diamantaras, 2002; Hu
et al., 2013). Motivated by this fact, such learning rate has been argued to be optimal for
the APEX network (Diamantaras & Kung, 1996; Diamantaras, 2002) and used by others
(Yang, 1995).
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where the ith diagonal element of DT , DT,i = ∑T−1
t=1 y2

t,i, as defined in equa-
tion 2.8. Then equation 2.11 is equivalent to

yT = D−1
T

(
T−1∑
t=1

ytx
�
t

)
xT − D−1

T RTyT .

Interestingly, the matrices obtained on the right side are algebraically
equivalent to the feedforward and lateral synaptic weight matrices defined
in equation 2.6:

WT = D−1
T

(
T−1∑
t=1

ytx
�
t

)
and MT = D−1

T RT . (2.12)

Hence, the Jacobi iteration for solving equation 2.11,

yT ← WTxT − MTyT , (2.13)

converges to the same fixed point as the coordinate descent, equation 2.10.
Iteration 2.13 is naturally implemented by the same single-layer linear

neural network as for the asynchronous update, Figure 1B. For each stim-
ulus presentation the network goes through two phases. In the first phase,
iteration 2.13 is repeated until convergence. Unlike the coordinate descent
algorithm, which updated the activity of neurons one after another, here,
activities of all neurons are updated synchronously. In the second phase,
synaptic weight matrices are updated according to the same rules as in the
asynchronous update algorithm, equation 2.9.

Unlike the asynchronous update, equation 2.7, for which convergence
is almost always guaranteed (Luo & Tseng, 1991), convergence of iteration
2.13 is guaranteed only when the spectral radius of M is less than 1 (Strang,
2009). Whereas we cannot prove that this condition is always met, the
synchronous algorithm works well in practice. While in the rest of the
letter, we consider only the asynchronous updates algorithm, our results
hold for the synchronous updates algorithm provided it converges.

3 Stationary Synaptic Weights Define a Principal Subspace

What is the nature of the lower-dimensional representation found by our
algorithm? In CMDS, outputs yT,i are the Euclidean coordinates in the prin-
cipal subspace of the input vector xT (Cox & Cox, 2000; Mardia et al., 1980).
While our algorithm uses the same cost function as CMDS, the minimiza-
tion is performed in the streaming, or online, setting. Therefore, we cannot
take for granted that our algorithm will find the principal subspace of the
input. In this section, we provide analytical evidence, by a stability analysis
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in a stochastic setting, that our algorithm extracts the principal subspace of
the input data and projects onto that subspace. We start by previewing our
results and method.

Our algorithm performs a linear dimensionality reduction since the
transformation between the input and the output is linear. This can be
seen from the neural activity fixed point, equation 2.10, which we rewrite
as

yT = FTxT , (3.1)

where FT is a matrix defined in terms of the synaptic weight matrices WT
and MT :

FT := (
Im + MT

)−1 WT . (3.2)

Relation 3.1 shows that the linear filter of a neuron, which we term a neural
filter, is the corresponding row of FT . The space that neural filters span, the
row space of FT , is termed a filter space.

First, we prove that in the stationary state of our algorithm, neural filters
are indeed orthonormal vectors (see section 3.2, theorem 1). Second, we
demonstrate that the orthonormal filters form the basis of a space spanned
by some m eigenvectors of the covariance of the inputs C (see section 3.3,
theorem 2). Third, by analyzing linear perturbations around the stationary
state, we find that stability requires these m eigenvectors to be the principal
eigenvectors and therefore the filter space to be the principal subspace (see
section 3.4, theorem 3).

These results show that even though our algorithm was derived starting
from the CMDS cost function, equation 2.1, FT converges to the optimal
solution of the representation error cost function, equation 1.3. This corre-
spondence suggests that F�

T FT is the algorithm’s current estimate of the pro-
jection matrix to the principal subspace. Further, in equation 1.3, columns
of F� are interpreted as data features. Then columns of F�

T , or neural filters,
are the algorithm’s estimate of such features.

Rigorous stability analyses of PCA neural networks (Oja, 1982, 1992; Oja
& Karhunen, 1985; Sanger, 1989; Hornik & Kuan, 1992; Plumbley, 1995)
typically use the ODE method (Kushner & Clark, 1978). Using a theorem
of stochastic approximation theory (Kushner & Clark, 1978), the conver-
gence properties of the algorithm are determined using a corresponding
deterministic differential equation.5

5Application of stochastic approximation theory to PCA neural networks depends on
a set of mathematical assumptions. See Zufiria (2002) for a critique of the validity of these
assumptions and an alternative approach to stability analysis.
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Unfortunately the ODE method cannot be used for our network. While
the method requires learning rates that depend only on time, in our net-
work, learning rates (1/DT+1,i) are activity dependent. Therefore we take
a different approach. We directly work with the discrete-time system, as-
sume convergence to a stationary state, to be defined below, and study the
stability of the stationary state.

3.1 Preliminaries. We adopt a stochastic setting where the input to the
network at each time point, xt , is an n-dimensional independent and iden-
tically distributed random vector with zero mean, 〈xt〉 = 0, where brackets
denote an average over the input distribution, and covariance C = 〈xtx

�
t 〉.

Our analysis is performed for the stationary state of synaptic weight
updates; that is, when averaged over the distribution of input values, the
updates on W and M average to zero. This is the point of convergence of our
algorithm. For the rest of the section, we drop the time index T to denote
stationary state variables.

The remaining dynamical variables, learning rates 1/DT+1,i, keep de-
creasing at each time step due to neural activity. We assume that the algo-
rithm has run for a sufficiently long time such that the change in learning
rate is small and it can be treated as a constant for a single update. Moreover,
we assume that the algorithm converges to a stationary point sufficiently
fast such that the following approximation is valid at large T,

1
DT+1,i

= 1∑T
t=1 y2

t,i

≈ 1
T〈y2

i 〉
,

where y is calculated with stationary state weight matrices.
We collect these assumptions into a definition:

Definition 1 (Stationary State). In the stationary state,

〈ΔWi j 〉 = 〈ΔMi j 〉 = 0,

and

1
Di

=
1

T〈y2
i 〉 ,

with T large.
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The stationary state assumption leads us to define various relations be-
tween synaptic weight matrices, summarized in the following corollary:

Corollary 1. In the stationary state,

〈yi xj 〉 = 〈y2
i 〉Wi j , (3.3)

and

〈yi yj 〉 = 〈y2
i 〉(Mi j + δi j ), (3.4)

where δi j is the Kronecker delta.

Proof. The stationarity assumption when applied to the update rule on W,
equation 2.9, leads immediately to equation 3.3. The stationarity assumption
applied to the update rule on M, equation 2.9, gives

〈yiy j〉 = 〈y2
i 〉Mi j, i �= j.

The last equality does not hold for i = j since diagonal elements of M are
zero. To cover the case i = j, we add an identity matrix to M, and hence one
recovers equation 3.4.

Remark. Note that equation 3.4 implies 〈y2
i 〉Mi j = 〈y2

j〉Mji—that lateral con-
nection weights are not symmetrical.

3.2 Orthonormality of Neural Filters. Here we prove the orthonor-
mality of neural filters in the stationary state. First, we need the following
lemma:

Lemma 1. In the stationary state, the following equality holds:

Im + M = WF�. (3.5)

Proof. By equation 3.4, 〈y2
i 〉

(
Mik + δik

) = 〈yiyk〉. Using y = Fx, we substi-
tute for yk on the right-hand side: 〈y2

i 〉
(
Mik + δik

) = ∑
j Fk j〈yix j〉. Next, the

stationarity condition, equation 3.3, yields 〈y2
i 〉

(
Mik + δik

) = 〈y2
i 〉

∑
j Fk jWi j.

Canceling 〈y2
i 〉 on both sides proves the lemma.

Now we can prove our theorem:

Theorem 1. In the stationary state, neural filters are orthonormal:

FF� = Im. (3.6)
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Proof. First, we substitute for F (but not for F�) its definition (see equation
3.2): FF� = (Im + M)−1WF�. Next, using lemma 1, we substitute WF� by
(Im + M). The right-hand side becomes (Im + M)−1(Im + M) = Im.

Remark. Theorem 1 implies that rank(F) = m.

3.3 Neural Filters and Their Relationship to the Eigenspace of the
Covariance Matrix. How is the filter space related to the input? We partially
answer this question in theorem 2, using the following lemma:

Lemma 2. In the stationary state, F�F and C commute:

F�FC = CF�F . (3.7)

Proof. See section A.2.

Now we can state our second theorem.

Theorem 2. At the stationary state state, the filter space is an m-dimensional
subspace in R

n that is spanned by some m eigenvectors of the covariance matrix.

Proof. Because F�F and C commute (see lemma 2), they must share the
same eigenvectors. Equation 3.6 of theorem 1 implies that m eigenvalues
of F�F are unity and the rest are zero. Eigenvectors associated with unit
eigenvalues span the row space of F and are identical to some m eigenvectors
of C.6

Which m eigenvectors of C span the filter space? To show that these are
the eigenvectors corresponding to the largest eigenvalues of C, we perform
a linear stability analysis around the stationary point and show that any
other combination would be unstable.

3.4 Linear Stability Requires Neural Filters to Span a Principal Sub-
space. The strategy here is to perturb F from its equilibrium value and show
that the perturbation is linearly stable only if the row space of F is the space
spanned by the eigenvectors corresponding to the m highest eigenvalues of
C. To prove this result, we need two more lemmas.

Lemma 3. Let H be an m × n real matrix with orthonormal rows and G an (n −
m) × n real matrix with orthonormal rows, whose rows are chosen to be orthogonal
to the rows of H. Any n × m real matrix Q can be decomposed as

Q = A H + S H + B G,

6 If this fact is not familiar, we recommend Strang’s (2009) discussion of singular value
decomposition.
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where A is an m × m skew-symmetric matrix, S is an m × m symmetric matrix,
and B is an m × (n − m) matrix.

Proof. Define B := Q G�, A := 1
2 (Q H� − H Q�) and S := 1

2 (Q H� +
H Q�). Then A H + S H + B G = Q(H�H + G�G) = Q.

We denote an arbitrary perturbation of F as δF, where a small parameter
is implied. We can use lemma 3 to decompose δF as

δF = δA F + δS F + δB G, (3.8)

where the rows of G are orthogonal to the rows of F. Skew-symmetric δA
corresponds to rotations of filters within the filter space; it keeps neural fil-
ters orthonormal. Symmetric δS keeps the filter space invariant but destroys
orthonormality. δB is a perturbation that takes the neural filters outside the
filter space.

Next, we calculate how δF evolves under the learning rule, 〈�δF〉.
Lemma 4. A perturbation to the stationary state has the following evolution under
the learning rule to linear order in perturbation and linear order in T−1:

〈ΔδFi j 〉 =
1
T

∑
k

(
Im + M

)−1
ik

〈y2
k 〉

⎡
⎣∑

l

δFklCl j −
∑
lpr

δFkl Fr pClp Fr j

−
∑
lpr

FklδFr pClp Fr j

⎤
⎦ − 1

T
δFi j . (3.9)

Proof. The proof is provided in section A.3.

Now we can state our main result in the following theorem:

Theorem 3. The stationary state of neuronal filters is stable, in large-T limit, only
if the m-dimensional filter space is spanned by the eigenvectors of the covariance
matrix corresponding to the m highest eigenvectors.

Proof. The Full proof is given in section A.4. Here we sketch the proof.
To simplify our analysis, we choose a specific G in lemma 3 without

losing generality. Let v1,...,n be eigenvectors of C and v1,...,n be corresponding
eigenvalues, labeled so that the first m eigenvectors span the row space of
F (or filter space). We choose rows of G to be the remaining eigenvectors:
G′ := [vm+1, . . . , vn].

By extracting the evolution of components of δF from equation 3.9 using
equation 3.8, we are ready to state the conditions under which perturbations
of F are stable. Multiplying equation 3.9 on the right by G� gives the
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evolution of δB:

〈�δBj
i 〉 =

∑
k

P j
ikδBj

k where Pj
ik ≡ 1

T

((
Im + M

)−1
ik

〈y2
k〉

v j+m − δik

)
.

Here we changed our notation to δBk j = δBj
k to make it explicit that for

each j, we have one matrix equation. These equations are stable when all
eigenvalues of all P j are negative, which requires, as shown in section A.4,

{
v1, . . . , vm}

>
{
vm+1, . . . , vn} .

This result proves that the perturbation is stable only if the filter space
is identical to the space spanned by eigenvectors corresponding to the m
highest eigenvalues of C.

It remains to analyze the stability of δA and δS perturbations. Multiply-
ing equation 3.9 on the right by F� gives

〈�δAi j〉 = 0 and 〈�δSi j〉 = −2
T

δSi j.

δA perturbation, which rotates neural filters, does not decay. This behavior
is inherently related to the discussed symmetry of the strain cost function,
equation 2.1, with respect to left rotations of the Y matrix. Rotated y vectors
are obtained from the input by rotated neural filters, and hence δA pertur-
bation does not affect the cost. But δS destroys orthonormality, and these
perturbations do decay, making the orthonormal solution stable.

To summarize our analysis, if the dynamics converges to a stationary
state, neural filters form an orthonormal basis of the principal subspace.

4 Numerical Simulations of the Asynchronous Network

Here, we simulate the performance of the network with asynchronous up-
dates, equations 2.7 and 2.9, on synthetic data. The data were generated by
a colored gaussian process with an arbitrarily chosen “actual” covariance
matrix. We choose the number of input channels, n = 64, and the number of
output channels, m = 4. In the input data, the ratio of the power in the first
four principal components to the power in the remaining 60 components
was 0.54. W and M were initialized randomly, and the step size of synaptic
updates was initialized to 1/D0,i = 0.1. The coordinate descent step is cy-
cled over neurons until the magnitude of change in yT in one cycle is less
than 10−5 times the magnitude of yT .

We compared the performance of the asynchronous updates network,
equation 2.7 and 2.9, with two previously proposed networks, APEX (Kung
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Figure 2: Performance of the asynchronous neural network compared with ex-
isting algorithms. Each algorithm was applied to 40 different random data sets
drawn from the same gaussian statistics, described in text. Weight initializa-
tions were random. Solid lines indicate means, and shades indicate standard
deviations across 40 runs. All errors are in decibels (dB). For formal metric def-
initions, see the text. (A) Strain error as a function of data presentations. The
dotted line is the best error in batch setting, calculated using eigenvalues of the
actual covariance matrix. (B) Subspace error as a function of data presentations.
(C) Nonorthonormality error as a function of data presentations.

& Diamantaras, 1990; Kung et al., 1994) and Földiak’s (1989), on the same
data set (see Figure 2). The APEX network uses the same Hebbian and
anti-Hebbian learning rules for synaptic weights, but the architecture is
slightly different in that the lateral connection matrix, M, is lower triangu-
lar. Földiak’s network has the same architecture as ours (see Figure 1B) and
the same learning rules for feedforward connections. However, the learn-
ing rule for lateral connections is �Mi j ∝ yiy j, unlike equation 2.9. For the
sake of fairness, we applied the same adaptive step-size procedure for all
networks. As in equation 2.9, the step size for each neuron i at time T was
1/DT+1,i, with DT+1,i = DT,i + y2

T,i. In fact, such a learning rate has been rec-
ommended and argued to be optimal for the APEX network (Diamantaras
& Kung, 1996; Diamantaras, 2002; see also note 4).

To quantify the performance of these algorithms, we used three different
metrics. First is the strain cost function, equation 2.1, normalized by T2 (see
Figure 2A). Such a normalization is chosen because the minimum value
of offline strain cost is equal to the power contained in the eigenmodes
beyond the top m: T2 ∑n

k=m+1(v
k)2, where {v1, . . . , vn} are eigenvalues of

sample covariance matrix CT (Cox & Cox, 2000; Mardia et al., 1980). For
each of the three networks, as expected, the strain cost rapidly drops toward
its lower bound. As our network was derived from the minimization of the
strain cost function, it is not surprising that the cost drops faster than in the
other two.

The second metric quantifies the deviation of the learned subspace from
the actual principal subspace. At each T, the deviation is ‖F�

T FT − V�V‖2
F ,
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where V is an m × n matrix whose rows are the principal eigenvectors,
V�V is the projection matrix to the principal subspace, FT is defined the
same way for APEX and Földiak networks as ours, and F�

T FT is the learned
estimate of the projection matrix to the principal subspace. Such a deviation
rapidly falls for each network, confirming that all three algorithms learn
the principal subspace (see Figure 2B). Again, our algorithm extracts the
principal subspace faster than the other two networks.

The third metric measures the degree of nonorthonormality among the
computed neural filters. At each T, ‖FTF�

T − Im‖2
F . The nonorthonormality

error quickly drops for all networks, confirming that neural filters converge
to orthonormal vectors (see Figure 2C). Yet again our network orthonor-
malizes neural filters much faster than the other two networks.

5 Subspace Tracking Using a Neural Network with Local
Learning Rules

We have demonstrated that our network learns a linear subspace of stream-
ing data generated by a stationary distribution. But what if the data are
generated by an evolving distribution and we need to track the correspond-
ing linear subspace? Using algorithm 2.9 would be suboptimal because the
learning rate is adjusted to effectively “remember” the contribution of all
the past data points.

A natural way to track an evolving subspace is to “forget” the con-
tribution of older data points (Yang, 1995). In this section, we derive an
algorithm with “forgetting” from a principled cost function where errors in
the similarity of old data points are discounted:

yT = arg min
yT

T∑
t=1

T∑
t′=1

β2T−t−t′
(x�

t xt′ − y�
t yt′ )

2, (5.1)

where β is a discounting factor 0 ≤ β ≤ 1 with β = 1 corresponding to our
original algorithm, equation 2.2. The effective timescale of forgetting is

τ := −1/ ln β. (5.2)

By introducing a T × T-dimensional diagonal matrix βT with diagonal
elements βT,ii = βT−i we can rewrite equation 5.1 in a matrix notation:

yT = arg min
yT

‖β�
T X�XβT − β�

T Y�YβT‖2
F . (5.3)

Yang (1995) used a similar discounting to derive subspace tracking algo-
rithms from the representation error cost function, equation 1.3.
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To derive an online algorithm to solve equation 5.3, we follow the same
steps as before. By keeping only the terms that depend on current output
yT we get

yT = arg min
yT

[
−4x�

T

(
T−1∑
t=1

β2(T−t)xty
�
t

)
yT + 2y�

T

(
T−1∑
t=1

β2(T−t)yty
�
t

)
yT

− 2
∥∥xT

∥∥2‖yT‖2 + ‖yT‖4

]
. (5.4)

In equation 5.4, provided that past input-input and input-output outer
products are not forgotten for a sufficiently long time (i.e., τ � 1), the first
two terms dominate over the last two for large T. After dropping the last
two terms, we arrive at

yT = arg min
yT

[
−4x�

T

(
T−1∑
t=1

β2(T−t)xty
�
t

)
yT + 2y�

T

(
T−1∑
t=1

β2(T−t)yty
�
t

)
yT

]
.

(5.5)

As in the nondiscounted case, minimization of the discounted online
CMDS cost function by coordinate descent, equation 5.5, leads to a neural
network with asynchronous updates,

yT,i ←
n∑

j=1

Wβ

T,i jxT, j −
m∑

j=1

Mβ

T,i jyT, j, (5.6)

and by a Jacobi iteration to a neural network with synchronous updates,

yT ← Wβ

TxT − Mβ

TyT , (5.7)

with synaptic weight matrices in both cases given by

Wβ

T,i j =
∑T−1

t=1 β2(T−t)yt,ixt, j∑T−1
t=1 β2(T−t)y2

t,i

, Mβ

T,i, j �=i =
∑T−1

t=1 β2(T−t)yt,iyt, j∑T−1
t=1 β2(T−t)y2

t,i

,

Mβ

T,ii = 0. (5.8)

Finally, we rewrite equation 5.8 in a recursive form. As before, we intro-
duce a scalar variable Dβ

T,i representing the discounted cumulative activity
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of a neuron i up to time T − 1,

Dβ

T,i =
T−1∑
t=1

β2(T−t−1)y2
t,i. (5.9)

Then the recursive updates are

Dβ

T+1,i ← β2Dβ

T,i + y2
T,i,

Wβ

T+1,i j ←Wβ

T,i j + yT,i(xT, j − Wβ

T,i jyT,i)/Dβ

T+1,i,

Mβ

T+1,i, j �=i ← Mβ

T,i j + yT,i(yT, j − Mβ

T,i jyT,i)/Dβ

T+1,i. (5.10)

These updates are local and almost identical to the original updates, equa-
tion 2.9, except the Dβ

T+1,i update, where the past cumulative activity is
discounted by β2. For suitably chosen β, the learning rate, 1/Dβ

T+1,i, stays
sufficiently large even at large T, allowing the algorithm to react to changes
in data statistics.

As before, we have a two-phase algorithm for minimizing the discounted
online CMDS cost function, equation 5.5. For each data presentation, first
the neural network dynamics is run using equation 5.6 or 5.7, until the
dynamics converges to a fixed point. In the second step, synaptic weights
are updated using equation 5.10.

In Figure 3, we present the results of a numerical simulation of our
subspace tracking algorithm with asynchronous updates similar to that
in section 4 but for nonstationary synthetic data. The data are drawn
from two different gaussian distributions: from T = 1 to T = 2500, with
covariance C1, and from T = 2501 to T = 5000, with covariance C2. We
ran our algorithm with four different β factors: β = 0.998, 0.995, 0.99, 0.98
(τ = 499.5, 199.5, 99.5, 49.5).

We evaluate the subspace tracking performance of the algorithm using
a modification of the subspace error metric introduced in section 4. From
T = 1 to T = 2500, the error is ‖F�

T FT − V�
1 V1‖2

F , where V1 is an m × n matrix
whose rows are the principal eigenvectors of C1. From T = 2501 to T = 5000,
the error is ‖F�

T FT − V�
2 V2‖2

F , where V2 is an m × n matrix whose rows are
the principal eigenvectors of C2. Figure 3A plots this modified subspace
error. Initially the subspace error decreases, reaching lower values with
higher β. Higher β allows for smaller learning rates, allowing a fine-tuning
of the neural filters and hence lower error. At T = 2501, a sudden jump is
observed corresponding to the change in principal subspace. The network
rapidly corrects its neural filters to project to the new principal subspace,
and the error falls to before jump values. It is interesting to note that higher
β now leads to a slower decay due to extended memory in the past.
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Figure 3: Performance of the subspace tracking asynchronous neural network
with nonstationary data. The algorithm with different β factors was applied
to 40 different random data sets drawn from the same nonstationary statis-
tics, described in the text. Weight initializations were random. Solid lines indi-
cate means, and shades indicate standard deviations. All errors are in decibels
(dB). For formal metric definitions, see the text. (A) Subspace error as a func-
tion of data presentations. (B) Nonorthonormality error as a function of data
presentations.

We also quantify the degree of nonorthonormality of neural filters using
the nonorthonormality error defined in section 4. Initially the nonorthonor-
mality error decreases, reaching lower values with higher β. Again, higher
β allows for smaller learning rates, allowing a fine-tuning of the neural
filters. At T = 2501, an increase in orthonormality error is observed as the
network adjusts its neural filters. Then the error falls to before change val-
ues, with higher β leading to a slower decay due to extended memory in
the past.

6 Discussion

In this letter, we made a step toward a mathematically rigorous model of
neuronal dimensionality reduction satisfying more biological constraints
than was previously possible. By starting with the CMDS cost function,
equation 2.1, we derived a single-layer neural network of linear units using
only local learning rules. Using a local stability analysis, we showed that our
algorithm finds a set of orthonormal neural filters and projects the input data
stream to its principal subspace. We showed that with a small modification
in learning rate updates, the same algorithm performs subspace tracking.

Our algorithm finds the principal subspace but not necessarily the princi-
pal components themselves. This is not a weakness since both the represen-
tation error cost, equation 1.3, and CMDS cost, equation 2.1, are minimized



A Hebbian/Anti-Hebbian Neural Network 1481

by projections to principal subspace and finding the principal components
is not necessary.

Our network is most similar to Földiak’s (1989) network, which learns
feedforward weights by a Hebbian Oja rule and the all-to-all lateral weights
by an anti-Hebbian rule. Yet the functional form of the anti-Hebbian learn-
ing rule in Földiak’s network, �Mi j ∝ yiy j, is different from ours, equation
2.9, resulting in three interesting differences. First, because the synaptic
weight update rules in Földiak’s network are symmetric, if the weights are
initialized symmetric (i.e., Mi j = Mji), and learning rates are identical for
lateral weights, they will stay symmetric. As mentioned above, such sym-
metry does not exist in our network (see equations 2.9 and 3.4). Second,
while in Földiak’s network neural filters need not be orthonormal (Földiak,
1989; Leen, 1991), in our network they will be (see theorem 1). Third, in
Földiak’s (1989) network, output units are decorrelated, since in its station-
ary state, 〈yiy j〉 = 0. This need not be true in our network. Yet correlations
among output units do not necessarily mean that information in the output
about the input is reduced.7

Our network is similar to the APEX network (Kung & Diamantaras, 1990)
in the functional form of both the feedforward and the lateral weights. How-
ever the network architecture is different because the APEX network has
a lower-triangular lateral connectivity matrix. Such difference in architec-
ture leads to two interesting differences in the APEX network operation
(Diamantaras & Kung, 1996): (1) the outputs converge to the principal com-
ponents, and (2) lateral weights decay to zero and neural filters are the
feedforward weights. In our network, lateral weights do not have to de-
cay to zero and neural filters depend on both the feedforward and lateral
weights (see equation 3.2).

In numerical simulations, we observed that our network is faster than
Földiak’s and APEX networks in minimizing the strain error, finding the
principal subspace and orthonormalizing neural filters. This result demon-
strates the advantage of our principled approach compared to heuristic
learning rules.

Our choice of coordinate descent to minimize the cost function in the ac-
tivity dynamics phase allowed us to circumvent problems associated with
matrix inversion: y ← (Im + M)−1Wx. Matrix inversion causes problems
for neural network implementations because it is a nonlocal operation. In

7As pointed out before (Linsker, 1988; Plumbley, 1993, 1995; Kung, 2014), PCA max-
imizes mutual information between a gaussian input, x, and an output, y = Fx, such
that rows of F have unit norms. When rows of F are principal eigenvectors, outputs are
principal components and are uncorrelated. However, the output can be multiplied by
a rotation matrix, Q, and mutual information is unchanged, y′ = Qy = QFx. y′ is now
a correlated gaussian, and QF still has rows with unit norms. Therefore, one can have
correlated outputs with maximal mutual information between input and output as long
as rows of F span the principal subspace.
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the absence of a cost function, Földiak (1989) suggested implementing ma-
trix inversion by iterating y ← Wx − My until convergence. We derived a
similar algorithm using Jacobi iteration. However, in general, such iterative
schemes are not guaranteed to converge (Hornik & Kuan, 1992). Our coor-
dinate descent algorithm is almost always guaranteed to converge because
the cost function in the activity dynamics phase, equation 2.4, meets the
criteria in Luo and Tseng (1991).

Unfortunately, our treatment still suffers from the problem common to
most other biologically plausible neural networks (Hornik & Kuan, 1992):
a complete global convergence analysis of synaptic weights is not yet avail-
able. Our stability analysis is local in the sense that it starts by assuming
that the synaptic weight dynamics has reached a stationary state and then
proves that perturbations around the stationary state are stable. We have
not made a theoretical statement on whether this state can ever be reached
or how fast such a state can be reached. Global convergence results us-
ing stochastic approximation theory are available for the single-neuron Oja
rule (Oja & Karhunen, 1985), its nonlocal generalizations (Plumbley, 1995),
and the APEX rule (Diamantaras & Kung, 1996); however, applicability of
stochastic approximation theory was questioned recently (Zufiria, 2002).
Although a neural network implementation is unknown, Warmuth and
Kuzmin’s (2008) online PCA algorithm stands out as the only algorithm
for which a regret bound has been proved. An asymptotic dependence of
regret on time can also be interpreted as convergence speed.

This letter also contributes to the MDS literature by applying the CMDS
method to streaming data. However, our method has limitations in that to
derive neural algorithms, we used the strain cost, equation 2.1, of CMDS.
Such cost is formulated in terms of similarities, inner products to be exact,
between pairs of data vectors and allowed us to consider a streaming setting
where a data vector is revealed at a time. In the most general formulation
of MDS, pairwise dissimilarities between data instances are given rather
than data vectors themselves or similarities between them (Cox & Cox,
2000; Mardia et al., 1980). This generates two immediate problems for a
generalization of our approach. First, a mapping to the strain cost function,
equation 2.1, is possible only if the dissimilarites are Euclidean distances
(see note 3). In general, dissimilarities do not need to be Euclidean or even
metric distances (Cox & Cox, 2000; Mardia et al., 1980) and one cannot
start from the strain cost, equation 2.1, for derivation of a neural algorithm.
Second, in the streaming version of the general MDS setting, at each step,
dissimilarities between the current and all past data instances are revealed,
unlike our approach where the data vector itself is revealed. It is a chal-
lenging problem for future studies to find neural implementations in such
generalized setting.

The online CMDS cost functions, equations 2.4 and 5.5, should also be
valuable for subspace learning and tracking applications where biological
plausibility is not a necessity. Minimization of such cost functions could
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be performed much more efficiently in the absence of constraints imposed
by biology.8 It remains to be seen how the algorithms presented in this
letter and their generalizations compare to state-of-the-art online subspace
tracking algorithms from machine learning literature (Cichocki & Amari,
2002).

Finally, we believe that formulating the cost function in terms of sim-
ilarities supports the possibility of representation-invariant computations
in neural networks.

Appendix: Derivations and Proofs

A.1 Alternative Derivation of an Asynchronous Network. Here, we
solve the system of equations 2.11 iteratively (Strang, 2009). First, we split
the output covariance matrix that appears on the left-hand side of equation
2.11 into its diagonal component DT , a strictly upper triangular matrix UT ,
and a strictly lower triangular matrix LT :

T−1∑
t=1

yty
�
t = DT + UT + LT . (A.1)

Substituting this into equation 2.11, we get

(
DT + ωLT

)
yT = (

(1 − ω) DT − ωUT

)
yT + ω

(
T−1∑
t=1

ytx
�
t

)
xT , (A.2)

where ω is a parameter. We solve equation 2.11 by iterating

yT ←− (
DT + ωLT

)−1

[(
(1 − ω) DT − ωUT

)
yT + ω

(
T−1∑
t=1

ytx
�
t

)
xT

]
,

(A.3)

until convergence. If symmetric
∑T−1

t=1 yty
�
t is positive definite, the conver-

gence is guaranteed for 0 < ω < 2 by the Ostrowski-Reich theorem (Re-
ich, 1949; Ostrowski, 1954). When ω = 1, the iteration, equation A.3, cor-
responds to the Gauss-Seidel method, and, when ω > 1, to the succesive
overrelaxation method. The choice of ω for fastest convergence depends on

8For example, matrix equation 2.11 could be solved by a conjugate gradient descent
method instead of iterative methods. Matrices that keep input-input and output-output
correlations in equation 2.11 can be calculated recursively, leading to a truly online
method.
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the problem, and we will not explore this question here. However, values
around 1.9 are generally recommended (Strang, 2009).

Because in equation A.2, the matrix multiplying yT on the left is lower tri-
angular and on the right is upper triangular, iteration A.3 can be performed
component-by-component (Strang, 2009):

yT,i ←− (1 − ω) yT,i + ω

∑
k

(∑T−1
t=1 yt,ixt,k

)
xT,k∑T−1

t=1 y2
t,i

− ω

∑
j �=i

(∑T−1
t=1 yt,iyt, j

)
yT, j∑T−1

t=1 y2
t,i

. (A.4)

Note that yT,i is replaced with its new value before moving to the next
component.

This algorithm can be implemented in a neural network,

yT,i ← (1 − ω) yT,i + ω

n∑
j=1

WT,i jxT, j − ω

m∑
j=1

MT,i jyT, j, (A.5)

where WT and MT , as defined in equation 2.6, represent the synaptic weights
of feedforward and lateral connections, respectively. The case of ω < 1 can
be implemented by a leaky integrator neuron. The ω = 1 case corresponds
to our original asynchronous algorithm, except that now updates are per-
formed in a particular order. For the ω > 1 case, which may converge faster,
we do not see a biologically plausible implementation since it requires
self-inhibition.

Finally, to express the algorithm in a fully online form, we rewrite equa-
tion 2.6 via recursive updates, resulting in equation 2.9.

A.2 Proof of Lemma 2

Proof of Lemma 2. In our derivation below, we use results from equations
3.2, 3.3, and 3.4 of the main text.

(
F�FC

)
i j =

∑
kl

FkiFkl〈xlx j〉

=
∑

k

Fki〈ykx j〉 (from 3.2)

=
∑

k

Fki〈y2
k〉Wk j (from 3.3)
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=
∑

kp

Fki〈y2
k〉

(
Mkp + δkp

)
Fpj (from 3.2)

=
∑

kp

Fki〈y2
p〉

(
Mpk + δpk

)
Fpj (from 3.4)

=
∑

p

Wpi〈y2
p〉Fpj (from 3.2)

=
∑

p

〈ypxi〉Fpj (from 3.3)

=
∑

pk

Fpk〈xkxi〉Fpj =
∑

pk

〈xixk〉FpkFpj = (
CF�F

)
i j. (from 3.2)

A.3 Proof of Lemma 4. Here we calculate how δF evolves under the
learning rule, 〈�δF〉, and derive equation 3.9.

First, we introduce some new notation to simplify our expressions. We
define lateral synaptic weight matrix M with diagonals set to 1 as

M̂ := Im + M. (A.6)

We use ˜ to denote perturbed matrices

F̃ := F + δF, W̃ := W + δW,

M̃ := M + δM,
ˆ̃M := I + M̃ = M̂ + δM. (A.7)

Note that when the network is run with these perturbed synaptic matrices,
for input x, the network dynamics will settle to the fixed point,

ỹ = ˆ̃M
−1

W̃x = F̃x, (A.8)

which is different from the fixed point of the stationary network, y =
M̂−1Wx = Fx.

Now we can prove lemma 4.

Proof of lemma 4. The proof has the following steps.

1. Since our update rules are formulated in terms of W and M, it will
be helpful to express δF in terms of δW and δM. The definition of F,
equation 3.2, gives us the desired relation:

(δM̂)F + M̂(δF) = δW. (A.9)
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2. We show that in the stationary state,

〈�δF〉 = M̂−1 (〈�δW〉 − 〈�δM〉F) + O
(

1
T2

)
. (A.10)

Proof. Average changes due to synaptic updates on both sides of
equation A.9 are equal: 〈�[(δM̂)F + M̂(δF)]〉 = 〈�δW〉. Noting that
the unperturbed matrices are stationary, that is, 〈�M〉 = 〈�F〉 =
〈�W〉 = 0, one gets 〈�δM〉F + M̂〈�δF〉 = 〈�δW〉 + O(T−2), from
which equation A.10 follows.

3. We calculate 〈�δW〉 and 〈�δM〉 using the learning rule, in terms of
matrices W, M, C, F, and δF, and plug the result into equation A.10.
This manipulation is going to give us the evolution of δF equation, 3.9.

First, 〈�δW〉 :

〈�δWi j〉 = 〈�W̃i j〉

= 1
T〈y2

i 〉
(〈ỹix j〉 − 〈ỹ2

i 〉W̃i j)

= 1
T〈y2

i 〉

(∑
k

F̃ik〈xkx j〉 −
∑

kl

F̃ikF̃il〈xkxl〉W̃i j

)
(from A.8)

= 1
T〈y2

i 〉

(∑
k

F̃ikCk j −
∑

kl

F̃ikF̃ilCklW̃i j

)

= 1
T〈y2

i 〉

(∑
k

FikCk j −
∑

kl

FikFilCklWi j +
∑

k

δFikCk j

− 2
∑

kl

δFikFilCklWi j −
∑

kl

FikFilCklδWi j

)
(from A.7)

= 1
T〈y2

i 〉

(∑
k

δFikCk j − 2
∑

kl

δFikFilCklWi j

−
∑

kl

FikFilCklδWi j

)
. (from 3.3)

Next we calculate 〈�δM〉:

〈�δMi j〉= 〈� ˜̂Mi j〉

= 1
T〈y2

i 〉
(〈ỹiỹ j〉 − 〈ỹ2

i 〉M̃i j) − 1
Di

δi j〈ỹ2
i 〉
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= 1
T〈y2

i 〉

(∑
kl

F̃ikF̃jl〈xkxl〉 −
∑

kl

F̃ikF̃il〈xkxl〉M̃i j

− δi j

∑
kl

F̃ikF̃il〈xkxl〉
)

(from A.8)

= 1
T〈y2

i 〉

(∑
kl

F̃ikF̃jlCkl −
∑

kl

F̃ikF̃ilCklM̃i j − δi j

∑
kl

F̃ikF̃ilCkl

)

= 1
T〈y2

i 〉

(∑
kl

FikFjlCkl −
∑

kl

FikFilCklMi j − δi j

∑
kl

FikFilCkl

+
∑

kl

δFikFjlCkl +
∑

kl

FikδFjlCkl − 2
∑

kl

δFikFilCklMi j

−
∑

kl

FikFilCklδMi j − 2δi j

∑
kl

δFikFilCkl

)
(from A.7)

= 1
T〈y2

i 〉

(∑
kl

δFikFjlCkl +
∑

kl

FikδFjlCkl − 2
∑

kl

δFikFilCklMi j

−
∑

kl

FikFilCklδMi j − 2δi j

∑
kl

δFikFilCkl

)
. (from 3.4)

Plugging these in equation A.10, we get

〈�δFi j〉 =
∑

k

M̂−1
ik

T〈y2
k〉

⎡
⎣∑

l

δFklCl j − 2
∑

l p

δFklFkpCl pWk j

−
∑

l p

FklFkpCl pδWk j −
∑
l pr

δFklFrpCl pFr j −
∑
l pr

FklδFrpCl pFr j

+ 2
∑
l pr

δFklFkpCl pMkrFr j +
∑
l pr

FklFkpCl pδMkrFr j

+ 2
∑
l pr

δkrδFklFkpCl pFr j

⎤
⎦ + O

(
1

T2

)
.

Mkr and δMkr terms can be eliminated using the previously derived
relations, equations 3.2 and A.9. This leads to a cancellation of some
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of the terms given above, and finally we have

〈�δFi j〉 =
∑

k

M̂−1
ik

T〈y2
k〉

⎡
⎣∑

l

δFklCl j −
∑
l pr

δFklFrpCl pFr j

−
∑
l pr

FklδFrpCl pFr j −
∑
l pr

FklFkpCl pM̂krδFr j

⎤
⎦ + O

(
1

T2

)
.

To proceed further, we note that

〈y2
k〉 = (FCF�)kk, (A.11)

which allows us to simplify the last term. Then we get our final result:

〈�δFi j〉 = 1
T

∑
k

M̂−1
ik

〈y2
k〉

⎡
⎣∑

l

δFklCl j −
∑
l pr

δFklFrpCl pFr j

−
∑
l pr

FklδFrpCl pFr j

⎤
⎦ − 1

T
δFi j + O

(
1

T2

)
.

A.4 Proof of Theorem 3. For ease of reference, we remind that in general
δF can be written as in equation 3.8:

δF = δA F + δS F + δB G.

Here, δA is an m × m skew symmetric matrix, δS is an m × m symmetric
matrix, and δB is an m × (n − m) matrix. G is an (n − m) × n matrix with
orthonormal rows. These rows are chosen to be orthogonal to the rows of F.
Let v1,...,n be the eigenvectors C and v1,...,n be the corresponding eigenvalues.
We label them such that F spans the same space as the space spanned by the
first m eigenvectors. We choose rows of G to be the remaining eigenvectors:
G� := [vm+1, . . . , vn]. Then, for future reference,

FG� = 0, GG� = I(n−m), and
∑

k

CikG�
k j =

∑
k

Cikv
j+m
k = v j+mG�

i j .

(A.12)

We also refer to the definition, equation A.6:

M̂ := Im + M.

Proof of Theorem 3. Below, we discuss the conditions under which pertur-
bations of F are stable. We work to linear order in T−1 as stated in theorem 3.
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We treat separately the evolution of δA, δS, and δB under a general pertur-
bation δF.

1. Stability of δB
1.1 Evolution of δB is given by

〈�δBi j〉 = 1
T

∑
k

(
M̂−1

ik

〈y2
k〉

v j+m − δik

)
δBk j. (A.13)

Proof. Starting from equation 3.8 and using equation A.12,

〈�δBi j〉 =
∑

k

〈�δFik〉G�
k j

= 1
T

∑
k

M̂−1
ik

〈y2
k〉

∑
l p

δFklCl pGjp − 1
T

δBi j.

Here the last line results from equation A.12 applied to equa-
tion 3.9. We look at the first term again using equations A.12
and then 3.8:

1
T

∑
k

M̂−1
ik

〈y2
k〉

∑
l p

δFklCl pGjp = 1
T

∑
k

M̂−1
ik

〈y2
k〉

∑
l

δFklv
j+mGjl

= 1
T

∑
k

M̂−1
ik

〈y2
k〉

v j+mδBk j.

Combining these gives equation A.13.
1.2 When is equation A.13 stable? Next, we show that stability

requires

{v1, . . . , vm} > {vm+1, . . . , vn}.

For ease of manipulation, we express equation A.13 as a matrix
equation for each column of δB. For convenience, we change
our notation to δBk j = δBj

k,

〈�δBj
i 〉 =

∑
k

P j
ikδBj

k

where Pj
ik ≡ 1

T

(
Oikv

j+m − δik

)
, and Oik ≡ M̂−1

ik

〈y2
k〉

.

We have one matrix equation for each j. These equations are
stable if all eigenvalues of all Pj are negative;
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{eig(P)} < 0 ⇒ {eig(O)} <
1
v j

, j = m + 1, . . . , n.

⇒ {eig(O−1)} > v j, j = m + 1, . . . , n.

1.3 If one could calculate eigenvalues of O−1, the stability con-
dition can be articulated. We start this calculation by noting
that

∑
k

Oik〈yky j〉 =
∑

k

M̂−1
ik

〈yky j〉
〈y2

k〉

=
∑

k

M̂−1
ik M̂k j = δi j. (from 3.4). (A.14)

Therefore,

O−1 = 〈yy�〉 = FCF�. (A.15)

Then we need to calculate the eigenvalues of FCF�. They are

eig(O−1) = {v1, . . . , vm}.

Proof. We start with the eigenvalue equation:

FCF�λ = λλ.

Multiply both sides by F�:

F�FCF�λ = λ
(
F�λ

)
.

Next, we use the commutation of F�F and C, equation 3.7, and
the orthogonality of neural filters, FF� = Im, equation 3.6, to
simplify the left-hand side:

F�FCF�λ = CF�FF�λ = C
(
F�λ

)
.

This implies that

C(F�λ) = λ(F�λ). (A.16)

Note that by the orthogonality of neural filters, the following
is also true:

F�F(F�λ) = (F�λ). (A.17)

All the relations above would hold true if λ = 0 and
(F�λ) = 0, but this would require F(F�λ) = λ = 0, which is a
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contradiction. Then equations A.16 and A.17 imply that (F�λ)

is a shared eigenvector between C and F�F. F�F and C were
shown to commute before, and they share a complete set of
eigenvectors. However, some n−m eigenvectors of C have zero
eigenvalues in F�F. We had labeled shared eigenvectors with
unit eigenvalue in F�F to be v1, . . . , vm. The eigenvalue of (F�λ)

with respect to F�F is 1; therefore, F�λ is one of v1, . . . , vm. This
proves that λ = {v1, . . . , vm} and

eig(O−1) = {v1, . . . , vm}.

1.4 From equation A.15, it follows that for stability

{v1, . . . , vm} > {vm+1, . . . , vn}.

2. Stability of δA and δS. Next, we check the stabilities of δA and δS:

〈�δAi j〉 + 〈�δSi j〉

=
∑

k

〈�δFik〉FT
k j (from 3.8)

= − 1
T

∑
k

M̂−1
ik

〈y2
k〉

∑
lm

FklδFjmClm − 1
T

(δAi j + δSi j)

= − 1
T

∑
k

M̂−1
ik

〈y2
k〉

∑
l

(FCFT )kl (δAT
l j + δST

l j) − (δAi j + δSi j).

(A.18)

In deriving the last line, we used equations 3.8 and A.12. The k
summation was calculated before equation A.14. Plugging this in
equation A.18, one gets

〈�δAi j〉 + 〈�δSi j〉 = − 1
T

(δAi j + δAT
i j + δSi j + δSi j) = −2

T
δSi j

⇒ 〈�δAi j〉 = 0 (from skew symmetry of A)

⇒ 〈�δSi j〉 = −2
T

δSi j.

δA perturbation, which rotates neural filters to other orthonormal
basis within the principal subspace, does not decay. On the other
hand, δS destroys orthonormality and these perturbations do decay,
making the orthonormal solution stable.

Collectively, the results above prove theorem 3.
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A.5 Perturbation of the Stationary State due to Data Presentation.
Our discussion of the linear stability of the stationary point assumed general
perturbations. Perturbations that arise from data presentation,

δF = �F, (A.19)

form a restricted class of the most general case and have special conse-
quences. Focusing on this case, we show that data presentations do not
rotate the basis for extracted subspace in the stationary state.

We calculate perturbations within the extracted subspace. Using equa-
tions 3.8 and A.12,

δA + δS = δF F�

= �F F� (from A.19)

= M̂−1(�W − �M̂ F)F� (expand 3.2 to first order in �)

= M̂−1(�W F� − �M̂). (from 3.6) (A.20)

We look at �W F� term more closely:

(�W F�)i j =
∑

k

ηi(yixk − y2
i Wik)F

�
k j

= ηi

(
yi

∑
k

Fjkxk − y2
i

∑
k

WikF�
k j

)

= ηi(yiyk − y2
i M̂i j)

=�M̂i j.

Plugging this back into equation A.20 gives

δA + δS = 0, ⇒ δA = 0, & δS = 0. (A.21)

Therefore, perturbations that arise from data presentation do not rotate neu-
ral filter basis within the extracted subspace. This property should increase
the stability of the neural filter basis within the extracted subspace.
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